Abstract
We prove two principal results. Firstly, we characterise Maass forms in terms of functional equations for Dirichlet series twisted by primitive characters. The key point is that the twists are allowed to be meromorphic. This weakened analytic assumption applies in the context of our second theorem, which shows that the quotient of the symmetric square L-function of a Maass newform and the Riemann zeta function has infinitely many poles.
Original language | English |
---|---|
Pages (from-to) | 387-422 |
Number of pages | 35 |
Journal | Acta Arithmetica |
Volume | 196 |
Issue number | 4 |
DOIs | |
Publication status | Published - 11 Jul 2020 |