Which return regime induces overconfidence behavior? Artificial intelligence and a nonlinear approach

Esra Alp Coşkun, Hakan Kahyaoglu, Chi Keung Marco Lau

Research output: Contribution to journalArticlepeer-review

Abstract

Overconfidence behavior, one form of positive illusion, has drawn considerable attention throughout history because it is viewed as the main reason for many crises. Investors’ overconfidence, which can be observed as overtrading following positive returns, may lead to inefficiencies in stock markets. To the best of our knowledge, this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude. We examine whether investors in an emerging stock market (Borsa Istanbul) exhibit overconfidence behavior using a feed-forward, neural network, nonlinear Granger causality test and nonlinear impulse-response functions based on local projections. These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional, multivariate time series. The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature, which is the key contribution of the study. The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon. Overconfidence is more persistent in the low- than in the high-return regime. In the negative interest-rate period, a high-return regime induces overconfidence behavior, whereas in the positive interest-rate period, a low-return regime induces overconfidence behavior. Based on the empirical findings, investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies, particularly in low-return regimes.

Original languageEnglish
Article number30
JournalFinancial Innovation
Volume9
Issue number1
DOIs
Publication statusPublished - 18 Jan 2023

Bibliographical note

Funding Information:
This study was derived from the Ph.D. thesis of Esra Alp Coskun which was completed at Dokuz Eylul University under the supervision of Hakan Kahyaoglu and Chi Keung Marco Lau during her visit to the University of Huddersfield. The authors want to give their special thanks to anonymous refrees for their comments which helped to improve the manuscript and also to Dr. Youssef Hmamouche and Dr. Philipp Adämmer for their technical comments. The authors, however, bear full responsibility for the paper.

Publisher Copyright:
© 2023, The Author(s).

Fingerprint

Dive into the research topics of 'Which return regime induces overconfidence behavior? Artificial intelligence and a nonlinear approach'. Together they form a unique fingerprint.

Cite this