THE POTENTIAL OF X-RAY DIFFRACTION (XRD) IN THE ANALYSIS OF BURNED REMAINS FROM FORENSIC CONTEXTS

Giampaolo Piga ¹, T.J.U Thompson ²*, Assumpció Malgosa ¹, Stefano Enzo ³

¹ Unitat d’Antropologia, Department de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra - Barcelona (Spain).
² School of Science & Technology, University of Teesside, Borough Road, Middlesbrough, TS1 3BA, UK.
³ Department of Chemistry, University of Sassari, Via Vienna 2, 07100 Sassari (Italy)

*Author for correspondence.
ABSTRACT

In view of the difficulties in extracting quantitative information from burned bone, we suggest a new and accurate method of determining the temperature and duration of burning of human remains in forensic contexts. Application of the powder X-ray Diffraction approach to a sample of human bone and teeth allowed their microstructural behaviour, as a function of temperature (200-1000°C) and duration of burning (0, 18, 36 and 60 min), to be predicted. The experimental results from the bones and teeth determined that the growth of hydroxylapatite crystallites is a direct and predictable function of the applied temperature, which follows a non-linear logistic relationship. This will allow the forensic investigator to acquire useful information about the equilibrium temperature brought about by the burning process and to suggest a reasonable duration of fire exposure.

KEYWORDS

forensic science, cremated remains, burned bones and teeth, hydroxylapatite, powder X-ray diffraction, forensic anthropology
The study of burned human remains is of considerable importance in forensic science, forensic anthropology and crime scene investigation. An understanding of the changes that the body has undergone as a result of burning can provide significant information regarding the context and conditions of the burning event itself. Such crime scene information can include the temperature of the fire, the position of the fire and the presence of accelerants. Unfortunately, the act of burning also causes a number of substantial changes to occur within the skeleton, which in turn can affect attempts to provide an identification of the deceased. Research has shown that both morphological and metric methods of anthropological assessment are affected (1, 2), in addition to methods of dating (3) and stable isotopic analysis (4) (an analytical technique of increasing importance in the forensic field). Extracting this contextual information from the remains, in addition to determining the level of anthropological inaccuracy created by the burning event, is dependent upon being able to determine whether the skeletal remains have indeed been burned. Beyond this, one needs to be able to correlate the changes in the skeleton to this contextual information with confidence.

Traditionally, a visual inspection of the remains has been used to suggest whether the bones have been subjected to fire (5, 6, 7), and beyond this, associations have been made between bone colour and fracturing with fire temperature and presence of soft tissues (8, 9, 10, 11). However, this can be complicated, and the links spurious. Furthermore, it has also been shown both experimentally and statistically that the most important changes in bone that can predict burning context involve changes within the skeletal microstructure (12). With all this in mind, it has been argued that a better and more reliable means of addressing these issues is with the powder X-ray diffraction approach, possibly combined with other types of microscopic approaches (13), with a particular view to the hydroxylapatite (HA) mineral phase, which is the main inorganic component of bones. The HA phase is made of tiny micro- (or nano-) crystals with average size dimension around ca. 17 nm, that are subjected to a growth changes when stimulated by the temperature of a fire. Broadly speaking, higher temperatures result in larger average sizes of HA nano-crystals, more ordered crystal structures and sharper XRD peak profiles. These heat-induced crystal changes are akin to
those resulting from standard bone diagenesis, and therefore we acknowledge that in the absence of important thermal effects, bone material decomposing for millions of years may undergo to a similar crystal growth mechanism, which can be suitably detected and accurately measured with help of the XRD patterns. (14, 15, 16)

The XRD technique was first applied to archaeological subjects in 1964 (17). Later Bonucci and Graziani (18) demonstrated that high temperatures of fire treatment induce a growth of the average crystallite size of HA, which can be appreciated relatively well from the line broadening/sharpening analysis of diffraction peaks. Since then, XRD has become a standard tool in anthropological work, although its adoption in forensic anthropology has been slow.

In the first critical study of its kind, Shipman et al. (19) investigated the microscopic morphology of various osteological materials and used X-ray diffraction in order to assess whether specimens of unknown taphonomic history were burnt and the maximum temperature reached by those specimens. Like the previously cited studies, these investigations were based on the fact that heating of bone causes a sharpening of diffraction patterns, attributed to increased crystallite size and decreased lattice strain (i.e. increased organisation of the crystal structure) of osteological phases. Rogers and Daniels (20) and other recent works (12, 21) have also recorded key crystalline changes within the temperature range here investigated. The potential for XRD to associate crystal change to burning context is therefore not in doubt.

In order to further extend the validity of XRD methodologies that appear in the literature, we present a calibration for bones and teeth as a function of a range of temperatures of burning (200°C-1000°C), while simultaneously noting the effect of duration of burning (0, 18, 36 and 60 min). This would enable a more general account of a real firing process. In fact, with this approach it will be
possible to make an accurate estimation of both temperature and likely time duration of the firing process involved. This is not possible with current macroscopic approaches.

We have started our analysis from dry bone. First, we acknowledge that this may not entirely accurately mimic real-world scenarios, however, we argue that although the influence of soft tissues may affect the temperature/duration required to alter the bone microstructure to the level that we present, they would not alter the ability of XRD to associate these changes to a burning context. Second, it is unlikely that the presence of the organic component within the bone would alter the crystalline composition significantly from that in a dry bone (data to be published in the near future, but see also a previous XRD studies augmented with thermo-gravimetry experiments). Bonhert et al. (22) observed that for total incineration of a body via cremation about two hours are necessary at a constant temperature of 800°C, while for destruction of the fleshy parts about 50 minutes are believed to be needed. Thus, in the following study we have selected comparable duration of burning times. Of course, it is not guaranteed absolutely that the ramp heating process applied in the laboratory furnace is accurately reproducing the heating process of a real fire. It should also be noted that a burning event may not cause complete change throughout the bone cortex, however our XRD technique usually involves the grinding of bone samples, thereby assessing a volume-weighted average crystal size sampled over an at least “bimodal” distribution, which would reduce the influence of differences between the outer and inner regions of the bone.

Materials and Methods

We have used 57 human femoral fragments and 12 molars teeth for this experiment. The samples used for calibration were heat-treated with an heating rate of 20°C/min at selected temperatures (200°C-1000°C for 0, 18, 36 and 60 minutes) in air using a NEY muffle furnace. The specimens for X-ray investigations were powdered by manual grinding in an agate mortar.
The X-ray diffraction (XRD) patterns were recorded overnight using Bruker D8, Philips PW-1050, Siemens D-500, Rigaku D/MAX diffractometers in the Bragg–Brentano geometry with CuKα radiation ($\lambda = 1.54178$ Å). The goniometer was equipped with a graphite monochromator in the diffracted beam and the patterns were collected with 0.05° of step size. The X-ray generator worked at a power of 40 kV and 30 mA and the resolution of the instruments (divergent and antiscatter slits of 0.5°) was determined using α-SiO$_2$ and α-Al$_2$O$_3$ standards free from the effect of reduced crystallite size and lattice defects. The powder patterns were collected in the angular range 10 - 140° in 2θ and were analyzed according to the Rietveld method (23), using the programme $MAUD$ (24). This is an efficient approach that evaluates quantitatively the amount, structure and microstructural parameters of mineralogical phases keeping into account also the instrumental parameters. This is a necessary pre-requisite in order to correctly distinguish the average crystallite size from the lattice disorder when using peak broadening. This method may replace previous approaches that were adopted to study the bones based on a arbitrarily defined “index of crystallinity”.

Results and Discussion

In Figure 1 we report a pattern of X-ray diffraction intensity from the untreated human femur sample, here studied as a function of the scattering angle 2θ. A full curve using the Rietveld fit has been calculated according to the 97wt % contribution of the structure factors of hydroxylapatite (monoclinic, space group P2$_1$/c, refined lattice parameters $a = 9.440$, $b = 18.898$, $c = 6.896$ Å and $\beta = 120.67^\circ$) and 3.0 wt% of calcite (trigonal, R-3c, $a = 4.988$, $c = 17.070$ Å) and added to the graph. As is usual in the Rietveld approach, the curve difference between calculated and experimental data points are shown at the bottom, while the sequence of bars indicate the expected peak positions for each phase. Examination of this feature is particularly useful in determining whether skeletal
material has been burned, or whether the changes are due to other taphonomic events (such as 25, 26).

The quantitative Rietveld analysis points to the fact that hydroxylapatite is the main phase for bones. The structure of hydroxylapatite is reported as hexagonal with a space group of P63/mmc, but the monoclinic structure factor (27, 28) was preferred here since it gave systematically better agreement factors with our results. The peak profiles of hydroxylapatite are very broad on account of the nanocrystalline condition of the material with very small average crystallite size and/or large lattice disorder. The average coherent diffraction domain calculated after separating strain from size effects according to the Rietveld approach is in the range between 168-170 Å.

Note that, apart from the root mean square deviation problems, this result may be different from the figure normally obtained by applying the Scherrer equation (29) on the most intense peak. In fact, using this equation within the Rietveld approach for a modern bone, Michel et al. (30) determined an average crystallite size of 138 Å. The value may also be distinct from the average particle size that can be evaluated using SAXS data, since the latter may refer to a collection of agglomerated crystallites (12, 31, 32). Furthermore, it should be kept in mind that average values from transmission electron microscopy observations, which may also differ from this work, refer to a surface weighted mean (33).

In Figure 2 the XRD pattern and Rietveld fit of an untreated human tooth is reported. In comparison to Figure 1, it can be seen that the peaks for calcite are absent. Moreover, the peaks for apatite appear sharper (on account of a larger average crystallite size of ca. 224 Å). Differences in microstructure are likely related to the different mechanical resistance properties of apatite in teeth and bones, respectively.
The results of our investigation into the average crystallite size of the sample of femoral bone as a function of applied temperature (which is an equilibrium temperature of the furnace) and duration of burning are reported in Table 1 and given in Ångstrom (Å) units. For temperatures of 200°C to around 650°C (0 min) no significant growth of HA appears to be induced. Also, the exposure time of 18, 36 and 60 min at these temperatures are not dramatically changing the microstructure, with only slight effects of grain growth, on account of a relative stability of the system. It is not so from 700 °C (36, 60 min) to higher temperatures, where an effect of sudden growth appears evident and further distinguishable in the temperature range 750-850°C, where three separate trends for the growth processes can be evaluated. This is significant since this temperature range corresponds with the temperature of the average house fire (34). For specimens treated at temperatures higher than 850°C and for long burning times, the determination of the average crystallite size may be difficult to reproduce because of the upper resolution of instrument broadening. In fact, an upper limit of 1500 Å for crystal size determination is generally associated with this technique. This upper limit is a problem also experienced by other techniques (32).

The simplistic association between bony changes and temperature alone has been criticised previously, whereby it was argued that high temperature and low duration events may result in similar heat-induced changes to low temperature and high duration events (12). Our data confirms this assertion, as here a residence time of 60 minutes evidences an effect of crystallite growth that would be obtained at temperatures ca. 100°C higher without any residence time.

The markedly different behaviour for the specimens treated above 650°C is clearly seen in Figure 3a and 3b, where symbols refer to the measured crystallite size values as a function of temperature treatment. For the sake of clarity, the results concerning the curve with 36 min of exposure time are reported separately since they closely overlaps the data of curve from 18 min exposure. Restricting our attention to the specimens heated without any residence time, we can appreciate even with the
logarithmic scale the rather sudden increase of the average crystallite size for temperatures around 750 °C, in agreement with previous XRD observations.

The growth process seems to proceed up to 1000°C following a sigmoidal growth-type law typical of most reactions in a solid state. The following equation (full lines) was fit to the experimental data:

\[y = A_2 + \frac{(A_1 - A_2)}{1 + \left(\frac{x}{x_0}\right)^p} \]

The optimized parameters (presented in Table 2) have a precise physical meaning: \(A_1 \) value was actually fixed to the size dimension of HA for samples before any heat-induced growth; \(A_2 \) is the size limit reached at the end of the growth process; \(x_0 \) is the temperature relevant to the flex point of the logistic curves and \(p \) is a parameter for the growth rate, likely dependent on scanning rate, temperature and duration of burning. Note that for the series with duration of 0 min the growth phenomenon is particularly sharp in the range 750-900°C since \(p = 24 \), while for the other two curves the growth kinetics appears to occur in a more extended range from 600°C to 1000°C where the relevant \(p \) values are quite close to 12.

It can be seen from Table 3 that the behaviour and growth mechanism of teeth as a function of firing temperature (with 0 minutes of exposure) is similar to that observed in bones. This is a useful observation as it suggests that data collected from one hard tissue is applicable to the other. However, the final average values of HA microcrystallites at high temperature appear slightly reduced. This is of limited surprise since the enamel tooth crowns are known to fragment under firing in the temperature range between 700°C and 750 °C - presumably due to the high pressure exerted by water molecules trapped inside by the tooth enamel, which is of course made by highly compacted HA. Nonetheless, the data plotted confirm a logistic trend which was fitted again with
the sigmoidal equation used previously. Of course, the A_1 parameter turns out to be close to the initial value for the average crystallite size of 224 Å, the A_2 figure was 994 Å, while the inflection point for the growth process X_o is located at 841 Å, with the p parameter of 17. These numerical parameters emphasise the analogies and differences between the behaviour of teeth and bones as a function of temperature, which is reported for the sake of comparison in Figure 4. As it can be seen, the average size increases for the crystallites of HA are lower when compared to those observed for the HA of femoral bone, but the inflection point of the two sigmoidal curves appears to be practically the same.

We report in Figure 5 a selected portion of the patterns from between 30° to 39° in 2θ from the burning of the femoral specimens at temperatures of 700, 775, 800, 825, 850, 900 and 1000 °C respectively. Figure 5 shows the disappearance of the calcite and the simultaneous appearance of calcium oxide. As can be seen, the peak of calcium oxide occurring at $2\theta = 37.5^\circ$ starts to appear at 775°C, becoming more evident at 800°C and increasing with temperature until 1000°C where this phase reaches its maximum amount. Again, this is significant as it suggests another mechanism for differentiating burned from non-burned forensic specimens.

Results are somewhat different with the dental samples. First, no important contribution of calcite is observed in the teeth patterns. As can be seen in Figure 6, during the process of apatite growth induced by thermal treatment, the calcium oxide peak starts to be visible in the teeth at ca. 850°C, while in the bones the calcium oxide peak was evaluated after burning at 775°C. In addition to this, the amount of calcium oxide decomposed appears to be lower (ca. 1.0 wt%) in the case of teeth, where a concentration value of 7.0 wt.% was determined. It can also be seen that at 1000°C apatite can also decompose a significant fraction (10.0 wt%) of the $\text{Ca}_9\text{MgNaP}_7\text{O}_{28}$ phase, which turns out to be trigonal, with lattice parameter $a = 10.355$; $c = 37.09$ Å (35).
Conclusions

A means to estimate the temperature and duration of a forensic burning event, focussing on the microscopic changes in bone and teeth and using powder x-ray diffraction has been developed. The technique is particularly appropriate for events within the temperature range 200°C – 1000°C for a variety of burning times. This range includes most forensic scenarios, although it should also be noted that this range would also include most archaeological scenarios too and this methodology would be appropriate in those contexts.

The growth process undergone by the hydroxylapatite crystallites in the mineralogical phase of the femoral samples follows a logarithmic sigmoid trend with a characteristic temperature around 850°C, as was determined with the four duration of burning times adopted here. This can be used not only to determine whether hard tissues have been burned, but also to suggest the temperature and duration of that burning event. In the thermal treatment of 0 min, the growth rate parameter p seems to be higher than in the results from increased periods of exposure. Thermal treatments for 60 min anticipate about 100 °C the growth effects that are otherwise observed after treatments for 0 min.

In the case of teeth, the growth phenomena induced by firing are again described with a logistic type function with a characteristic temperature of 841°C, very close to that of bones, in spite of typical fragmentation induced in the temperature range 700°C-750°C. However, the average crystallite size of HA in untreated teeth (224 Å) is significantly larger than in untreated skeletal bones (ca. 170 Å), respectively. Alternatively, the average size of HA crystallites from burning above 900°C is larger in bones than teeth. This suggests that the two types of natural bioapatite need to be compared to their specific calibration curves when the precise estimation of a fire temperature is desired, and that one curve for all hard tissues is not advised.
Acknowledgements

G. Piga thanks the Sardinia Autonomous Region for financial support of Master and back project TSI60. The authors thank Prof. Vittorio Mazzarello (University of Sassari) for supplying the osseous materials employed in this study. Thanks are also due to: Dr. Ignasi Galtès (Universitat Autònoma de Barcelona) for helpful discussions concerning the forensic applications.

References

Additional information and repeat reprint requests:
Dr Tim Thompson,
School of Science & Technology, University of Teesside, Borough Road, Middlesbrough, Cleveland, UK, TS1 3BA.
t.thompson@tees.ac.uk