Technological change enhancing productivity and economic growth

The Economic Theory of Invention and Innovation
edited by Albert N. Link


One criticism of many research papers (and the research field of innovation is not immune from this deficiency) is that they are not sufficiently grounded in theory. Therefore, Albert N. Link’s edited contribution to the International Library of Critical Writings in Economics is particularly welcome. The volume, which is structured in five parts, brings together practically all the key writings on the economics of invention and innovation – in other words, the seminal articles that have laid the groundwork for contemporary research in the field. I will not attempt to summarize all these articles, but provide below a broad review of this book and identify some genuine highlights.

Academics who are teaching and/or writing in the field will, as a result, find the book of particular utility in understanding its development and, indeed, it is potentially magnificent as a tool to deepen students’ knowledge of the economics of invention and innovation.

In his introductory chapter, Link rightly emphasizes that technological change enhances productivity growth (and economic growth) and ‘ultimately leads to an improvement in the quality of life’ (p ix), which is thus important from a policy perspective. These aspects are the rationale for the book and the importance of the subject area, and Link makes an important distinction, noting that we should:

‘think of an invention as the creation of a new technology. Innovation, then, is the first application of the invention – the technology – in production.’ (pp x– xi)

An important distinction is whether an invention and/or innovation is (a) exogenous (out with an organization or unexplained: Part I), such as technical change in the ‘aggregate production function’ (Solow, 1957) or disaggregated into ‘an inter-industry and intra-industry component’ (Massell, 1961); (b) induced (‘purposive’ rather than unexplained: Part II), which is, for example, well complemented by Ahmad’s (1966) theory and Fellner’s (1971) empirical support; or (c) endogenous (within: Part III), such as Hébert and Link’s (2006) chronology of the entrepreneur as an innovator. The articles in the first three parts provide a broad basis for understanding the theoretical underpinnings of exogenous, induced and endogenous innovation.

Of great interest to this reviewer, given the rising interest within enterprise and innovation pedagogy of experiential learning, is one of the final articles in Part III on the ‘learning by doing’ aspect of innovation (Arrow, 1962), which leads nicely into Part IV (sources of innovation), with Cohen and Levinthal’s (1989) classic article on innovation and learning within the R&D process, described as its ‘two faces’ and the concept of ‘learning before doing’ in developing new process technology (Pisano, 1996). Kamien and Schwartz (1971), also in Part IV, are notable for their fascinating study of risky R&D projects’ expenditure patterns – an issue still relevant today, particularly for those financing high-risk R&D (assuming such investors are not foolhardy enough to use financial risk modelling, as major banks have done to
that ‘corporate entrepreneurship’ or ‘intrapreneurship’ is, in effect, invention and innovation.

Dr Jonathan M. Scott
Queen’s University Management School
Queen’s University Belfast, Northern Ireland

Note
1 Full references have been omitted, but can be found on the contents page of Link (2008).

Reference