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Abstract—The fault diagnosis in power transformers is 

carried out using Dissolved Gas Analysis (DGA). Although DGA 

does provide key information for fault detection, the method is 

inherently complex. Several methods have been developed for 

DGA, but still possess challenges in accurately detecting the 

fault. A method has been developed to generate synthetic data 

using Monte-Carlo simulation. The generated synthetic data is 

feed into DGA excel tool to investigate the accuracy of fault 

detection. The synthetic data can be used to further enhance the 

DGA tool, improve its accuracy and investigate the inclusive 

faults. A model has been proposed for the integration of 

synthetic data generator with DGA tool for machine learning 

and to obtain an automated and improved DGA tool for fault 

diagnoses in power transformers.  
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I. INTRODUCTION 

Power transformers are an integral part of any electrical 
power network and it's essential to have the means for early 
fault detection and preventive maintenance in them. Dissolved 
Gas Analysis (DGA) is a common method that is in use 
currently for incipient fault diagnosis. Certain gases are 
generated because of the thermal and electrical stress 
produced in the transformer’s insulating oil (mineral oil) 
during its prolonged operation. Faults in the transformer can 
drastically increase the generation rates of these gases in 
certain characteristic ways. The relevant gases generated are 
hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene 
(C2H4), and ethane (C2H6). The decomposition of the 
insulating paper results in the occurrence of carbon monoxide 
(CO) and carbon dioxide (CO2) in addition [1, 2]. DGA 
involves analyzing the concentration of these gases in the 
transformer oil and comparing it with historical data to find 
the gas generation rates. Certain ratios of the gas 
concentrations are calculated which can help us with 
identifying the fault type. The many approaches developed for 
analyzing these gases and interpreting their significance 
include Key Gas, Dornenburg Ratio, Rogers Ratio, 
Nomograph, IEC Ratio, Duval Triangle, and CIGRE [3]. 

DGA has traditionally been done manually but many ways 
to automate the process can be found in the literature. A 
diagnostic tool based on MS Excel spreadsheet has been 
produced in [3]. An expert model based on the fuzzy logic 
approach to finding the transformer incipient fault in [5]. A 

Support Vector Machine (SVM) with six classifiers and minor 
training data has been used to do four DGA methods and 
provide the appropriate result in [6]. A similar method in 
which the wavelet technique is combined with least-squares 
SVM has been studied in [7]. [8] proposes the use of a DGA 
diagnostic tool based on Artificial Neural networks (ANN) for 
more accurate fault detection in transformers with multiple 
faults. A Neural Pattern Recognition (NPR) has been 
suggested in [9] which uses different data transformation 
techniques to improve train the Artificial Intelligence (AI) the 
diagnostic accuracy of the model.  The main drawbacks with 
these AI-based methods are the huge costs involved and the 
high amounts of time and computing power required to train 
the model to start producing accurate results. The results 
produced in these works are from limited DGA data sets that 
are available in the public domain, which is not enough to 
sufficiently train the models. Hence, it is proposed in this 
paper the use of synthetic data sets to train the proposed DGA 
tool, which can be created using synthetic data generation 
techniques. 

Synthetic data generation has been used before in recent 
literature to create datasets for model training. A machine-
learning-based synthetic data generation method has been 
used in [10] for healthcare applications, which generates 
synthetic time-series data that composed of nested sequences 
using hidden Markov models and regression models. A 
complex nested model has been utilized to create terabytes of 
structurally similar data for Internet of Things (IoT) research 
by the authors in [11]. The application of synthetic data 
generation to create training datasets can be observed in many 
other fields such as in plasma current quench studies [12], to 
analyze and predict seismic activities [13], to correctly 
identify and detect people using omnidirectional cameras [14], 
wastewater treatment modeling studies [15], and 
meteorological studies [16, 17]. The synthetic data has been 
used to test the DGA toolbox. The accuracy of DGA toolbox 
has been investigated using synthetic data along with its 
applications for machine learning. 

DGA is important for the security, reliability, 
maintenance, and economic operation of power system 
infrastructure. It is evident from the literature review that there 
is a knowledge gap when it comes to online / machine 
learning-based DGA methods and one of the obstacles in the 
way of addressing this is the lack of synthetic data sets. 
Therefore, the objective of this paper is to address the gap by 



developing a method for generating synthetic dissolved gas 
data for DGA and validating it. 

The rest of the paper is organized as follows: Section II 
explains the methodology used for synthetic data generation 
and its segregation, Section III discusses the use of machine 
learning model implementation, Section IV is the discussion 
of the results and Section V is the Conclusion. 

II. METHODOLOGY  

For DGA, it is important to identify and interpret the fault 
correctly. Multiple DGA methods have been developed, but 
still discrepancies exist in detecting the fault. Duval triangle 
and Pentagon methods were developed to reach a conclusive 
decision. Nevertheless, there still exists some unidentified 
fault. Therefore, the developed DGA toolbox is being trained 
using synthetic data. The synthetic data is generated to 
identify all possible faults with a focus on fault regimes, where 
a conclusive decision cannot be taken. 

The procedure for data synthesis mainly consists of 2 
stages. In stage one we find the data pattern from a preexisting 
dataset of DGA’s. This data is passed to a data segregator 
block which understands the data structure and finds the 
number of classes, upper limit, lower limit, mean, median, 
variant, mode, standard deviation, degree of freedom, and 
range from any given numerical dataset. These values are 
stored in a data collector block which acts as an input to the 
Monte-Carlo data generator in stage 2 of the process. The 
block diagram of the proposed process is shown below. 

 

 

Fig. 1. Block diagram for data synthesis 

A. Data Segregator  

This functional block takes any numerical dataset as input 
and understands the structure of the dataset provided. This is 
carried out with 3 functions stated below. 

 
Class Finder: From the provided dataset this function finds 
all the column header and checks for numerical value content 
in each column, if multiple numerical values are found it 
makes a class with the column header name. This process is 

carried out till all columns are scanned. Once this scanning is 
completed the Class finder passes the class names to the data 
collector class.  
 
Limit Finder: For each of the found classes this function 
finds the upper limit and lower limit after analyzing each of 
the class data. The formula used in the limit finder is: 
 ���� = ���(�2: ��)  ��� = ���(�2: ��) 

 
Stat Generator: Once all the classes are passed to the Data 
Collector, we then use Stat Generator to get mean, median, 
variant, mode, range, standard deviation, degree of freedom, 
and number repeatability.  

For finding the median of the series and Degree of 
Freedom, we use a different approach which is as below; 

  

 ���� =  �� ����                                    �� � �� ����
���� ! �"���# ! ��                        �� � �� $%%  

 
And for Degree of Freedom the formula is; 

  &' = � − 1       �$* ��+ℎ $� -ℎ� +.��� ��*��� 
 

Once all the above paraments are calculated the results are 
passed to the Data Collector. The Data Collector as the input 
to the Monte-Carlo data generator. 

B. Monte-Carlo Data Generator 

The algorithm for the proposed Mote-Carlo generator is 
given as, 

  

Algorithm 1: Monte-Carlo Data 

Synthesizer 

Step 1:  Get the required sample size from the 

user (N) 

Step 2:  Get the total number of classes 

required from the Data Collector (NC) 

Step 3:            for i from 1 to NC 

                              do 

                                  for j from 1 to N 

                                       do 

/0123456 → 869:66; <= & == ?@ + @BCD + DEF ∗ HD2 + BI= 23456 

   

  if (N = MO) 

 Integer of Value = O@ + @
BCD + BEP and MO 

= MO+MO  

   

                                                      else  

                                Value = Integer of Value   Outcome Value is Stored in the corresponding class header cell                                       end 

                         end 



 

Our proposed computation algorithm used in the Monte-
Carlo method consist of a combination of parameters as 
listed:  

• Mean (M) 

• Median (MED) 

• Variant (V) 

• Mode (MO) 

• Upper limit & Lower limit (UL & LL) 

• Standard deviation (SD) 

• Degree of freedom (DOF) 

• Range (R) 

• Required sample size (user input value) (N) 
 

The DGA excel tool as proposed by A. Mekkayil, G. Pillai, 
and M. Malcolm [4] has been used to validate the generated 
synthetic dataset accuracy. This tool is capable of predicting 
all the 7 basic faults in DGA by using the existing methods 
like Key Gas Method, Ratio Method, IEC Ratio Method, 
Duval Triangle Method, and Duval Pentagon Method. The 
faults are classified as Partial Discharge (PD), Discharges of 
low energy (D1), Discharges of high energy (D2), 
Combination of thermal faults and discharges (DT), Thermal 
faults not exceeding 3000C (T1), Thermal faults between the 
range of  3000C and 7000C (T2) and Thermal faults exceeding 
700⁰ C (T3). A summary of faults is given in Table I. 

TABLE I.  IEC Ratio Method Diagnosis [4] 

Fault 

Code 

Fault Type C2H2

/ 

C2H4 

 C2H2/ 

C2H4 

C2

H4/ 

C2

H6 

PD 

D1 

D2 

T1 

T2 

 

T3 

 

Partial discharges 

Discharges of low 

energy 

Discharges of high 

energy 

Thermal fault, T< 

300 °C 

Thermal fault 

300 °C < T < 700 °C 

Thermal fault, T > 

700 °C 

NSa 

>1 

0.6-

2.5 

NSa  

<0.1 

<0.2b 

<0.1 

0.1 - 0.5 

0.1 - 1 

>1 but 

NSa 

 

>1 

>1 

<0.

2 

>1 

>2 

>1 

 

1– 4 

>4 

*NSa = Non-significant whatever the value. 

*An increasing trend in the concentration of C2H2 

may indicate that the hotspot temperature is above 

1000 °C. 

 

III. DGA AND MACHINE LEARNING MODEL 

As the world is moving towards Industry 4.0 revolution, 
digital twin and machine learning are coming into play. 
Therefore, large data sets are required to train the machine 
learning and feed it into digital twin models. However, in 
some cases i.e. DGA, large data sets are not available or 
difficult to obtain. To resolve this, the paper presents an 
innovative solution for integrating the DGA toolbox with 
synthetic data generation as shown in Figure 3. 

 

Fig. 2. Integration of synthetic data with DGA toolbox and machine 
learning 

The proposed model in Figure 3 needs to validate and 
continuously feed into available small data sets. This will not 
only validate the model but also built a database. The synthetic 
data generator can be used for the optimization of DGA 
toolbox. The Duval triangle and Pentagon methods do provide 
good indicators for fault diagnosis, but the limitations can be 
optimized using synthetic data with the possibility of new 
shape development. Historic DGA real data can also be feed 
to train and optimized the model.  

Although the proposed model in Figure 3 does provide a 
promising enhancement of DGA toolbox. However, it does 
also bring significant challenges. The generation of synthetic 
data is entirely dependent on the sample of real data provided 
as a seed value. Similarly, the larger sample of real data means 
a better generation of synthetic data. However, the data is 
obtained from different transformers might provide different 
seed values irrespective of similar faults. The difference in 
seed value for similar faults can lead to the generation of 
different synthetic datasets and thus a different final analysis. 
Although, the synthetic data generator and excel tool provide 
an accuracy of more than 80 %.  Nevertheless, this error can 
be minimized by using the modified feedback control loop 
model as shown in Figure 4. The feedback system can help to 
validate and optimize fault detection and improve accuracy. 
The accuracy and reliability of the synthetic data generation 
can be further improved by using data from multiple sources, 
which are well-defined. As the number of available real 
datasets increases, the model can be modified to make it more 
robust and uncertainty can be reduced.  

 

Fig. 3. Optimization and validation of DGA toolbox 

Once the proposed models have been optimized and 
validated, it is expected that the performance of DGA toolbox 



will improve significantly. Moreover, the proposed models in 
Figure 3 and Figure 4 are a step forward to implement the 
DGA toolbox in Industry 4.0. 

IV. RESULTS AND DISCUSSION 

The main reason for using synthetic data for DGA study is 
because it’s not easy to obtain large sets of real data. 
Therefore, the expected boundaries of data have been used to 
generate synthetic data using the Monte-Carlo Data generator.  
DGA excel tool has been feed-in into synthetic data to study 
the accuracy and inclusive faults [18]. 

 

Synthetic data is used to study the accuracy of DGA faults 
as given in Table I. Figure 2 plots the accuracy of the 
predicted faults by DGA tool for synthetic data input as 
generated by Monte-Carlo simulations. For 70 data points 
generated for Thermal faults exceeding 700⁰ C (T3) by the 
synthetic data generator, the excel tool predicted 65 T3 faults 
accurately, with an accuracy of 92.8%. Similarly, the error 
was calculated for all other faults. It has been calculated that 
the Discharge of low energy (D1) has the highest accuracy of 
93.33%, followed by T1 and T3 at 92%, then PD at 90%, T2, 
D2, and S stands at 86%. The synthetic data generator was 
able to generate a dataset for all the desired faults as the user’s 
requirement with an overall accuracy of above 90%.  

 

Fig. 4. Accuracy of the predicted faults by DGA tool for synthetic data 
input as generated by Monte-Carlo simulations.  

Several simulations have been carried out to test the 
accuracy of DGA excel tool for different sets of synthetic data 
generation. The accuracy of the fault diagnosis remained 
above 86 %. It has been concluded that the DGA tool and 
synthetic data generator is shown the results as expected. The 
DGA excel tool be integrated with a synthetic data generator 
for machine learning and artificial intelligence applications. 

V. CONCLUSIONS 

DGA is important for the security, reliability, 
maintenance, and economic operation of power system 
infrastructure. In this paper, we developed a method for 
generating synthetic dissolved gas data for DGA using Monte-
Carlo Simulation. In the previous work, an excel tool was 
developed for DGA which was used in this work to validate 
the synthetic data. The synthetic data generator and DGA tool 
are integrated and the accuracy of the synthetic data has been 
investigated. It has been concluded that for all fault detection 
cases using synthetic data, accuracy of more than 85 % has 
been achieved. The synthetic data can be used to further 
enhance the DGA tool, improve its accuracy and investigate 

the inclusive faults. A model has also been proposed to 
integrate the synthetic data generator with DGA tool for 
machine learning applications. This model can help to train 
machine learning by generating several different synthetic 
datasets. Further work will be a focus on the implementation 
of the proposed model for machine learning applications. 
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