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PDM: Privacy-Aware Deployment of Machine-
Learning Applications for Industrial Cyber-

Physical Cloud Systems
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Abstract—The cyber-physical cloud systems (CPCSs) release powerful capability in provisioning the complicated industrial services.
Due to the advances of machine learning in attack detection, a wide range of machine-learning applications are involved in industrial
CPCSs. However, how to ensure the implementation efficiency of these applications, and meanwhile avoid the privacy disclosure of the
datasets due to data acquisition by different operators, remain challenging for the design of the CPCSs. To fill this gap, a privacy-aware
deployment method, named PDM, is devised for hosting the machine-learning applications in the industrial CPCSs. In PDM, the
machine-learning applications are partitioned as multiple computing tasks with certain execution order, like workflows. Specifically, the
deployment problem is formulated as a multi-objective problem for improving the implementation performance and resource utility.
Then the most balanced and optimal strategy is selected by leveraging an improved differential evolution technique. Finally, through
comprehensive experiments and comparison analysis, PDM is fully evaluated.

Index Terms—CPCSs; Machine learning; Privacy-aware deployment; NSDE

F

1 INTRODUCTION

Cyber physical cloud systems (CPCSs) take full advantage
of the strucutre optimazation of the cloud infrastructure to
extend the traditional cyber-physical systems (CPSs). The
new framework greatly improves the interaction among net-
work physical devices and contributes to performing large-
scale data storage and analysis. By means of the advantages

� Xiaolong Xu is with the School of Computer and Software, Nanjing Uni-
versity of Information Science and Technology, Nanjing 210044, China,
is with the Facility Horticulture Laboratory of Universities in Shandong,
WeiFang University of Science & Technology, ShouGuang 262700, China,
is with Jiangsu Collaborative Innovation Center of Atmospheric Envi-
ronment and Equipment Technology (CICAEET), Nanjing University of
Information Science and Technology, Nanjing 210044, China, is with the
State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China.
Email: xixu@ieee.org;

� Ruichao Mo is with the School of Computer and Software, Nanjing
University of Information Science and Technology, Nanjing 210044,
China.
Email: ruichaomo@gmail.com

� Xiaochun Yin is with the Facility Horticulture Laboratory of Universities
in Shandong, WeiFang University of Science & Technology, ShouGuang
262700, China.
Email: xiaochunyin@wfust.edu.cn

� Mohammad R. Khosravi is with the Department of Computer Engineer-
ing, Persian Gulf University, Bushehr 75169, Iran.
E-mail: m.khosravi@mehr.pgu.ac.ir

� Fahimeh Aghaei is with the Electrical and Electronics Engineering De-
partment, Ozyegin University, Orman Sk.34794 Istanbul, Turkey.
E-mail: fahimeh.aghaei@ozu.edu.tr

� Victor Chang is with the School of Computing, Engineering and Digital
Technologies, Teesside University, TS1 3BX Middlesbrough, U.K
E-mail: V.Chang@tees.ac.uk

� Guangshun Li is with the Qufu Normal University, Qufu 273165, China.
E-mail: Guangshunli@qfnu.edu.cn (Corresponding author)

Manuscript received ; revised

of easy scalability and strong capability of CPCSs, service
providers manage the industrial applications in the virtual
manners and thus provide highly reliable services for a large
number of users [1] [2]. Currently, the industrial CPCSs have
received extensive attention from various organizations in
multiple fields, including smart grid, etc.[3]. With the ex-
plosive growth in service scale and type from end-users, the
industrial CPCSs are becoming increasingly complicated, in-
telligent, and autonomous in realizing interactions between
the physical devices and the heterogeneous networks. Fur-
thermore, the interactions suffers from the potential network
attacks as a result of multi-user acquisition and frequent
network communications [4].

Fortunately, machine learning (ML) is an efficient tech-
nology to detect the network attacks and develop corre-
sponding defense schemes in advance, so as to improve the
security of industrial CPCSs [5]. In particular, the industrial
CPCSs deploy machine-learning-based appliations to imple-
ment the accurate attack detection and ensure their own
security and reliability [6]. Technically the machine-learning
based security assessment learns the current state infor-
mation and the past of the industrial CPCSs. To improve
the implementation efficiency, the ML-based applications
are partitioned as multiple subtasks to realize parallel and
distributed processing with the support of the workflow. In
such workflows, each subtask is responsible for every aspect
of machine learning, including problem formulation, model
construction, and model verification. Besides, each subtask
often requires massive amounts of data from the CPCSs or
the intermediate data for execution. Machine learning and
workflow complement each other to further improve the
service performance and security of the industrial CPCSs
[7].
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Generally, the implementation efficiency is bound up
with the locations of the tasks in the machine-learning
workflows (MLWs) and the datasets, thus the internal rela-
tionship between the data and the workflow tasks needs to
be investigated. Therefore, it is critical to distribute massive
data to the storage nodes reasonably in response to data
acquisition for MLWs that are distributed in the cloud [8].
In the industrial CPCSs, as there are multiple concurrent
machine learning applications to be deployed, it is difficult
to guarantee the execution efficiency of all the workflows.
The reason is that the generated intermediate data from
some computing tasks in the machine-learning workflows
are also the source data for the other computing tasks
which also affect the execution efficiency of the workflows.
Therefore, it is crucial to properly schedule the workflows
and data for the CPCSs to the cloud, thereby improving the
implementation efficiency of the workflow applications [9].

Meanwhile, in the industrial CPCSs, massive physical
devices are equipped to collect data from the end-users in
real-time to complete the required services[10]. Accordingly,
a large amount of historical data from the end-users will
be transmitted in the cloud to assess the security of the
systems and achieve the further analysis of the data. But the
privacy disclosure problem still exists, since the multiple
data operators will access the same data storage nodes
in the cloud[11][12]. Generally, when the MLWs used to
ensure system security are executed, these private dat[?]a
will be leveraged by different operations to complete the
security assessment of the industrial CPCSs, resulting in the
disclosure of the private data.

Furthermore, the energy consumption of the cloud is
also increasing with the rising data processing requirements
of the industrial CPCSs. In particular, the transmission and
processing of massive data consume a lot of energy, when
MLWs are executed. Nowadays, the optimization of power
consumption of the cloud data centers promotes the healthy
and sustainable development of industrial CPCSs and has
become the primary part in green computing[13]. On the
other hand, to ensure the quality of the service, the depend-
ability and stability of the cloud have also received increas-
ing attention[14]. The load balance of the physical nodes
enhances the reliability of the cloud data center, which is
an effective measure to ensure service performance, and
reduces the possibility of a single node being overloaded or
even crashing [15]. Overall, the allocation of computational
and storage resources dominates the performance of the
machine-learning applications which is determined by the
deployment strategies of the workflows.

Based on the above analysis, it is significantly essential
to ensure the implementation efficiency of the machine-
learning applications, and meanwhile eliminate the poten-
tial risk of privacy disclosure of the datasets since data
acquisition by different operators, remains challenging for
the effective operations of the industrial CPCSs. To satisfy
these requirements in the industrial CPCSs, a privacy-aware
deployment method, named PDM, is devised for hosting the
machine-learning applications and jointly optimizing the
data acquisition time, power efficiency and resource utility.
Specifically, the key contributions are four folds.

� The machine-learning applications in the industrial

CPCSs are partitioned as multiple subtasks by work-
flow technology.

� The non-dominated sorting differential evolution
(NSDE) technique is fully investigated to obtain the
deployment strategies for the machine-learning ap-
plications.

� The most balanced and optimal deployment strategy
is selected through the utility value evaluation by uti-
lizing the simple additive weighting (SAW) and mul-
tiple criteria decision making (MCDM) techniques.

� Extensive experiments and comparison analysis are
conducted to demonstrate the performance of PDM.

The rest of this paper is organized as follows. Section
2 introduces the related work. Section 3 designs a CPCSs
service framework with fat-tree. Section 4 elaborates the
system model and formalize the goal fitness function. Sec-
tion 5 presents the design of PDM. Section 6 examines the
performance of PDM experimentally. Section 7 draws the
conclusion and introduces the future work.

2 RELATED WORK

Driven by the rapid advancement of cloud computing, it is
becoming more and more common to send data generated
by CPCSs during the operation process to the cloud data
platform for processing, which improves the operating per-
formance of CPCSs. Besides, optimizing application tasks
and data deployment strategy achieves contribute to re-
ducing data acquisition time, thereby further improving the
operating performance of CPCSs. Meanwhile, data privacy
is one of the most concerned problems in CPCSs, which
brings a lot of attention from academia and industry.

In recent years, there are a series of research works to
study the task scheduling problem in CPCSs, an energy-
aware task scheduling algorithm based on the greedy algo-
rithm is proposed for the heterogeneous cloud in [16]. To
realize the implementation of scientific workflows, a novel
energy-efficient resource allocation scheme was proposed in
response to the expanding cloud [17]. Besides, to ensure the
stability and security of many applications and data in the
cloud, it is also wise to maintain the load balance of nodes.
Liu et al. [18] proposed a duplicate placement approach,
aiming to optimize data transmission efficiency, enhance
the parallel placement performance and improve the load
balance. Zhao et al. [19] comprehensively investigated the
data acquisition time and the load balance, and a data
placement method.

On the other hand, data privacy of the machine learning
application in the cloud has attracted massive attention and
plenty of privacy-preservation methods are presented to ad-
dress the security problems. In [20], the k-nearest neighbor
algorithm and local-sensitive hashing were utilized to keep
the private information of the images storing in the data
center and guarantee the traceability of images. Besides,
a protocol based on a watermark was proposed to avoid
unauthorized copying or modification. In [21], Li et al.
implemented fully homomorphic encryption with different
keys to conduct data encryption to guarantee the security
of training data. Then, the cost of deep learning in cloud
computing was analyzed to ensure the economy and secu-
rity of the proposed method. In [22], a privacy-preservation
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The total acquisition time Twn of twn consists of the
acquisition time for acquiring its necessary data �wn and
the intermediate result mdwn. Thus, Twn of task twn is
expressed by

Twn =
X

d2�wn[mdwn

Tac: (2)

Let WN be the amount of subtasks in a machine-
learning workflow. Then, the acquisition time Ttotal of all
sub-tasks in this workflow is represented as

Ttotal =
WN�1X

m=0

Twn: (3)

Since subtasks of the cloud environment obtain the data
set they request in a parallel and distributed manner, the
average data collection time is evaluated as the main eval-
uation criterion in this paper. Ultimately, the average data
acquisition time Tavg is expressed as

Tavg = Ttotal=WN: (4)

4.4 Transmission Power Consumption Model

The consumed power for data extraction and acquisition is
mainly generated by the operation of switches at different
layers.

Suppose the transmission rate of each switch is trs,
and the transmission power is tps. Thus, the transmission
time tswitch for the task of data size d transmitting across
switches and nodes is expressed as

tswitch = d=trs: (5)

Suppose that the number of switches that vj accesses to
the data set on vi is NSi;j . Then the consumed power of all
the switches caused by accessing the datasets is expressed
as

Eswitch = NSi;j � tswitch � tps: (6)

The power consumption Ewn generated by twn for ob-
taining all the requested data is deduced by

Ewn =
X

d2�wn[mdwn

Eswitch: (7)

Ultimately, the total transmission power consumption E
for all the tasks is expressed as

E =
WN�1X

wn=0

Ewn: (8)

4.5 Load Balance Model

Suppose that the virtual machine required by twn and ddn
are vmwn and vmdn, respectively. The capacity of vi and vj
are Ci and Cj . The number of the computing nodes is CS.
And correspondingly the number of the storage nodes is
SS. Assume that the computing node that executes twn and
the storage node for storing dn are vi and vj , respectively.

Thus, �calwn;i = 1; �storedn;j = 1. Otherwise, �calwn;i = 0; �storedn;j = 0.
Furthermore, the utilization Zcali of vi is expressed by

Zci =
WN�1X

wn=0

�c
wn;i
� vmwn=Ci: (9)

Besides, the utilization Zstorej of vj is expressed by

Zsj =
DN�1X

dn=0

�s
dn;j
� vmdn=Cj : (10)

Moreover, Zc is utilized to represent the mean resource
usage of the computing nodes in CPCSs which is expressed
by

Zc =
CS�1X

i=0

Zci =CS: (11)

Similarly, Zs is lerveraged to represent the mean re-
source usage of the storage nodes in CPCSs which is ex-
pressed by

Zs =
SS�1X

j=0

Zsj =SS: (12)

fZc and fZs are utilized to represent the average uti-
lization difference values for computing nodes and storage
nodes which are calculated by

fZc =
1
CS
�
CS�1X

i=0

(Zci � Zc)
2; (13)

and

fZs =
1
SS
�
SS�1X

j=0

(Zsi � Zs)
2: (14)

Finally, the variance eZ of the mean usage of computing
nodes and storage nodes is measured by

eZ =
1
2
� (fZc + fZs): (15)

4.6 Objective Functions and Constraint

While solving the privacy-aware deployment and privacy-
aware data processing problems of machine learning work-
flow, this paper aims to minimize the average data acquisi-
tion time, power consumption and load balancing of cloud
nodes. The optimization objectives is expressed as

Min(Tavg; eZ;E): (16)

Furthermore, the privacy-conflict of different data sets
is considered as the optimization goal to avoid privacy
leakage problems caused by operating on different data sets.
Generally, let �k = fd0; d1; d2; :::; da; db; :::; dK�1g
be the locations that the all datasets placed on the storage
node, where K is the total number of datasets. Then, the
constraint relationship between the privacy-conflict datasets
is described as a constraint, which is defined by

fda; dbg 62 PD j 8�k 2 �; 8a; b = 1; 2; :::;K � 1j: (17)
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5 METHOD DESIGN

5.1 Encoding

The deployment strategies for the MLWs are
encoded as the chromesomes at the endcoding
phase. Generally, the deployment strategies are
represented as X = fXT ; XMD; XODg, where
XT = fxT0 ; xT1 ; :::; xTm; :::; xTWN�1g represents the
deployment strategies with WN tasks. Besides, the
deployment strategies of WN creating intermediate data
and N workflow original source data are represented
by XMD = fxMD

0 ; xMD
1 ; :::; xMD

wn ; :::; xMD
WN�1g and

XOD = fxOD0 ; xOD1 ; :::; xODdn ; :::; xODDN�1g, respectively.
The deployment strategy for these data cannot be the same
node that stores the historical data in the cloud.

5.2 Objective Functions

To solve the multi-objective optimization problem, it is nec-
essary to jointly optimize the average data implementation
efficiency, the total consumed power, and the load balance
of the node to achieve the balance of the three objective
functions.

Average Data Implementation Efficiency: For the task
in TS, Eq.(1) is leveraged to calculate the time for storing
the intermediate result, and Eq.(4) is utilized to calculate
the implementation efficiency of the required data and the
average data implementation efficiency.

Total Consumed Power: For the task in TS, the trans-
mission consumed power of the switch is calculated by
Eq.(6) and Eq.(7). Then the consumed power of the switch
to perform all tasks is calculated by Eq.(8).

Load Balance: After calculating the load of computing
nodes and storage nodes in the cloud, the different values
for all these two kinds of nodes are determined. Then,
Eq.(15) is utilized to calculate the average load balance
variance of each node.

5.3 Privacy-aware Deployment Stategies Acquired by
NSDE

5.3.1 Initialization

As a genetic algorithm, NSDE generates an initial popu-
lation before the process of evolution. The parent popula-
tion is expressed as X = fX0; :::; Xi; :::; XCU�1g, where
Xi is the i-th chromosome. Suppose that the optimization
problem has WD tasks, WD intermediate data, and DN
workflow original source data, then Xi is expressed as
fXT

i ; XMD
i ; XOD

i g. XT
i represents the strategies for placing

WN tasks, XMD
i represents the strategies for WN data of

the intermediate result and XOD
i represents the strategies

for placing N original source data of the workflow.

5.3.2 Mutation

The operation of mutation is to combine the differential
genes of three chromosomes to produce a mutant chromo-
some. Generally, in Eq.(18), Xa, Xb and Xc are selected
as the parent chromsome randomly from X . Then, the
genotypes on these three chromosomes are combined to
construct a new chromosome with a new genotype. The

mutation factor C with values between 0 and 1 are ran-
domly set to increase genotype diversity. Therefore the new
chromosome Hi obtained by mutation is expressed by

Hi = Xa + C � (Xb �Xc): (18)

A mutation population H =
fH0; H1; :::;Hi; :::;HCU�1g is obtained, and the size
of the mutation population is still CU .

5.3.3 Crossover
To further increase the genetic diversity of the population,
the crossover operation is performed on mutation chromo-
some set H and parent population set X to produce a
crossover population. Generally, in Eq.(19), the crossover
factor CF with values between 0 and 1 is randomly gener-
ated at first. Then, a random number is set as a flag to select
the crossover gene Ri;j . If the random number is greater
than CF , the genotype it will select from Xi;j . Otherwise,
the genotype will select from Hi;j . Therefore, the crossover
gene Ri;j acquisition is expressed by

Ri;j =
�
Hi;j ; j = rand(0; 2WN + DN� 1)jjrand(0; 1) � CF;
Xi;j ; rand(0; 1) > CF:

(19)
Therefore, the crossover population R =

fR0; R1; :::; RCU�1g is acquired, and the population
size of R is CU .

5.3.4 Selection
In the stage of selection, the chromosome with good geno-
types in the crossover population and the parent popu-
lation need to be selected as a chromosome in the next
generation population. Therefore, X and R are combined
into Y = fY0; Y1; :::; Yi; :::; Y2CU�1g, and the population
size of Y is 2CU . The crowded distance calculation and
fast non-dominated sorting operations are performed on Y .
When performing fast non-dominant sorting, Y is divided
into multiple dominant layers Li(i = 0; 1; 2; : : : ). Since the
gene of chromosomes in Li is better than Li+1, so that
all chromosomes in Li+1 are completely dominated by all
chromosomes in Li. The chromosomes in Li are better than
Li+1 as excellent chromosomes are retained in the offspring.
Besides, in the same dominant layer Li, each chromosome
performs crowding distance calculation to preferentially
retain chromosomes with better crowding distance to the
offspring. Then, the chromosomes in the better dominant
layer and those in the same dominant layer with better
crowding distance will preferentially retain the offspring X
until the size of X is CU . Furthermore, the genetic oper-
ations are conducted by NSDE on X until the solution in
the population begins to converge or the maximum number
of iterations is reached, thereby multiple non-dominated
strategies for the MLWs deployment are acquired.

5.4 Optimal privacy-aware deployment strategy
When NSDE terminates, multiple strategies are acquired
for the MLWs deployment. The optimal one needs to be
selected as the optimal privacy-aware deployment strategy.
Therefore, SAW and MCDM are used to compute out the
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Fig. 3: Results of the weight w1 on the load balance and the implementation efficiency metrics under different MLW scales.

achieves the best time efficiency among these three methods.
We can deduce that some datasets which serve for multiple
workflows, choose the proper locations to minimize the
overall data implementation efficiency.
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Fig. 4: Results of the implementation efficiency for obtaining
the workflow original source data by using SP, TP, and PDM.

6.3.2 Deployment time of generated data
As each workflow could generate multiple datasets, the de-
ployment time for these generated datasets should be evalu-
ated. Fig. 5 shows a comparative analysis of the deployment
time of generated data by using SP, TP, and PDM with differ-
ent scales of workflows. As shown in Fig. 5, because TP and
SP do not consider the impact of the deployment time of the
data set during the execution process, the deployment time
of the data set generated during the execution of TP and SP
is relatively close. However, since PDM fully considers the
time of data set deployment during the execution process,

the time efficiency of PDM is better than that of TP and
SP. Besides, as the number of workflows increases, the time
performance of PDM deployment workflows to generate
data sets is still better. Therefore, PDM further effectively
shortens the execution time of the workflow by selecting an
appropriate deployment strategy for the data set generated
by the workflow.
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Fig. 5: Results of the deployment time of generated data by
using SP, TP, and PDM.

6.3.3 Implementation efficiency of generated and history
data
Likewise, the implementation efficiency for these generated
datasets and history datasets should be evaluated. Fig. 6
shows a comparative analysis of the implementation effi-
ciency of history data by SP, TP, and PDM with different








