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Abstract 

This paper considers the problem of position control and active vibration damping of a 

planar, array (or grid) of masses and springs, by a single actuator, attached to one corner of 

the array, which is required to translate and rotate the entire system from rest to rest, through 

target linear and angular displacements, simultaneously. An obvious challenge is that the 

system has many degrees of freedom, with many undamped vibration modes, and is clearly 

highly under-actuated. The control technique is a development of “wave-based control” 

whereby rapid and effective control of the entire system is achieved, robustly, using 

measurements made only at the actuator, of the actuator’s own motion and of the forces 

between the actuator and the attached flexible system. No detailed system model or system 

identification is needed. The actuator need not be ideal. The array does not have to be 

uniform, in its geometry or in the mass and spring values. The control strategy is simple to 

implement. The 2-D array is of interest in itself as a benchmark control challenge, but it can 

also be considered a model of various lumped structures, or a discretisation of distributed 

systems. 
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1. Introduction 

Among many methods applied to single-actuator, position control of lumped or distributed 

flexible mechanisms (see, for example, [1-7]), wave-based control (WBC) provides a low-

cost, precise, robust, rapid and effective strategy [8-17]. It has been well studied for 

rectilinear systems (1-D cascades of masses and springs) for rest-to-rest motion, with the 

same actuator combining position control and active vibration damping, simultaneously. This 

work is a novel development within the context of WBC to present its adaptability and ability 

to cope with a very flexible, array-like structure with many degrees of freedom. It is 

mentionable that using classical approaches, for example, a finely tuned PID controller while 

utilising a number of feedbacks and sensors located across the array may lead to the roughly 

similar performance and results as obtained and shown here. However, it should be 

emphasized that for a similar response resulted by other controllers, WBC has many 

advantages over the commonly-used approaches which makes it distinct. As will be seen, 

these include simplicity of the technique, ease of implementation, ‘no requirement for a 

system model’, ‘no need for any extra measurement or sensor in the system except at the 

actuator's output’ and therefore being a very low-cost and economically-efficient controller 

while presenting itself stable and very robust to modelling, actuator and to implementation 

errors. These later benefits have been identified in the literature on WBC area [8-17]. 

Also, some control methods with satisfactorily standard performance are based on modal 

analysis. But it has been reported that these methods usually suffer from mode truncation 

(ignoring of higher modes) and mode spillover (unintended excitation of higher modes) 

effects [4]. The modes then need to be identified in real time and somehow controlled, often 

by a single actuator (or more likely with fewer actuators than degrees of freedom).In fact, 

modal analysis represents the motion of the system in terms of the superposition of 

synchronous motions (mode shapes and mode frequencies). There is a sense in which it 



implicitly assumes synchronous (periodic) motion. These controllers are based on identifying 

and measuring the modes and then moving the actuator to try to control them explicitly. They 

then have concerns about modal truncation and mode spillover. By contrast, WBC strategy 

completely avoids the modal or frequency domains and works entirely in the time domain. 

Unlike other methods WBC does not wait for modes to become established and identified 

before controlling them. In fact it does not interpret the vibrations as modes but as travelling 

waves, which are then controlled on arrival back at the actuator. To wait for modes to become 

established is to wait too long. The transient is all-important, especially for rest-to-rest 

manoeuvres. If an approach doesn’t control the transient directly the controller will be poor 

and slow. 

Wave-based control sees the actuator as launching displacement “waves” into the flexible 

system while absorbing returning waves on arrival back to the actuator. In what follows the 

term “waves” refers to a change in displacement, or simply a motion disturbance, which is 

considered to propagate through the system, dispersing spatially and temporally as it goes. 

The controller gives an input motion request to the actuator, which is the sum of two 

components. The first is considered as the actuator’s launch wave, set by the controller, with 

a net displacement of half the target actuator displacement. To this it adds the measured wave 

returning to the actuator from the flexible system. It measures this returning wave at the 

actuator output, that is, where the actuator interfaces with (acts on, and is acted upon by) the 

flexible system. The sum of the launch wave and the measured returning wave becomes the 

request displacement input to the actuator. For an ideal actuator, this becomes the actuator 

motion. 

In the absence of external disturbing forces, the absorption of the returning wave by the 

actuator causes the system to move the second half of the target displacement while actively 

absorbing the system vibration. Thus position control and active vibration damping are 



seamlessly combined, being completed together. This synchronised completion is necessary, 

since if one is achieved without the other, further actuator motion will be needed to achieve 

the second requirement, which will necessarily disturb the achievement of the first. 

The present work investigates the extension of these ideas to single-actuator control of 2-

D arrays (grids) of point masses and interconnecting springs, as in the upper right of Figure 1. 

In addition to re-positioning in the 2-D plane to a target x and y displacement, there is now 

the added challenge of rotational motion, say to a target angular displacement, θ, all to be 

achieved by the controlled motion of a single L-shaped actuator, ABC, here chosen to be at 

one corner. Each of these three motions (x, y and z) takes a reference or target displacement 

as shown in figure 1 and first multiplies it by ½. This half reference input becomes the 

“launch” wave, that is the launch part of the actuator’s motion for that component of the 

manoeuvre (x-, y- or θ-motions). To these half-reference inputs are added what is here called 

the returning wave motions, [x, y, θ]b. These can be determined in different ways [8, 11, 17]. 

The lunching and returning waves will be introduced further in Section 3. It is mentionable 

that the signals used here as the reference are simple ramp inputs to the controller’s actuator 

which could be produced by a signal generator and given arbitrarily chosen values as the 

target displacement of the system’s tip. Since the references and target displacements for 

different manoeuvres in this work are chosen almost differently, they will be detailed in the 

following within the corresponding descriptions of each manoeuvre and its response. 

The lumped flexible array can be considered a benchmark challenge for 2-D flexible 

system control strategies in general as its sample applications can be well found in the 

literature [18, 19]. But it can also be considered a generic model of various systems of 

engineering interest. Thus, by choosing suitable mass and spring values, and grid shapes, it is 

possible to model, for example, distributed plates and beams of specific elastic constants [19-

21], or predominantly lumped devices ranging from micro-electromechanical devices, micro-



surgical tools through manipulators and robot arms, up to heavy-duty cranes and large space 

structures [22]. 

 
Figure 1: WBC of a 2-D structure modelled as a mass-spring array. The measured variables for 

control are the actual actuator x-y position and angle θ, and the forces at the actuator-system interface 

(in 7 springs). 

In the 1-D rectilinear case, with a simple string of masses and springs [8],the displacement 

waves have a single, two-way path, from actuator to system tip and back again, which 

somewhat limits the dispersion (although some dispersion is always present). In the 2-D 

system, by contrast, there are multiple, complex wave paths from the actuator to the system 
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boundaries and back again, so the dispersion and wave mixing are even more noticeable. The 

number of degrees of freedom is high. A further complication is coupling between transverse 

(shearing/rotational) motion and longitudinal motions in different directions throughout the 

grid. It was not clear beforehand, therefore, if the WBC ideas would work, and, if so, how 

well.  

Typically the goal is to move the system tip (the corner furthest from the actuator), from 

rest to rest, to a target position and angle. This in turn implies control of the entire flexible 

array, and also of any other point of interest in the array. 

2. Flexible system model 

The system of masses and springs was modelled by a straightforward computer simulation. 

The magnitude and direction of the forces on each mass were determined from its own 

position, the relative positions of neighbouring masses (or of the actuator itself for some of 

the masses), combined with the known spring stiffness values. The resulting accelerations 

were then integrated to get the new velocities and again to get the new positions, from which 

the forces could be determined for the next integration step. Both external damping (viscous 

damping to ground) and internal damping (viscous damping proportional to relative 

velocities) were included in the model. For the results presented below, however, all damping 

was set to zero, so that the only source of damping was the active damping due to the control 

system in the actuator. Also gravity was not considered in work presented here, so that grid 

can be considered to be moving in a horizontal plane, or in a micro-gravity environment. 

All motion was initiated by moving the actuator. Initially the actuator was assumed to be 

ideal, so that the actual actuator motion was made equal to the reference actuator motion. 

Later realistic actuator dynamics were added, which included the effects of dynamic loads 

due to the attached flexible system. In the second case the actuator was assumed to have its 



own sub-controller, responsible only for ensuring that the actuator’s actual motion followed 

the reference actuator motion as closely as possible. The wave-based control was at a higher 

level, at which the details of this sub-controller were of no concern.  

 

3. Control Implementation 

The basic ideas about WBC, especially for 1-D rectilinear systems, have already appeared in 

the literature [8, 10-12] and will not be reproduced in detail here. Here, in the 2-D case, as in 

the 1-D case, the entire control strategy focuses on the interface between the moving actuator 

and the flexible system. This interface is seen as a two-way gateway for energy and 

momentum transfer between the flexible system and the directly controlled actuator (See 

Figure 2). 



 
 

Figure 2: Details of the loading situation in interface; a) Equivalent applied loads on the grid 

from the actuator through a typical manoeuvre; b) Applied forces on the connecting joints of 

the displaced actuator 

Two sets of measurements are required. The first concern the translational and rotational 

position of the actuator itself, say [x, y, θ], which will probably be available from the actuator 

sub-control system. The second are the interface forces which, in this case, correspond to the 

forces in seven springs, whose x and y components are Fx=Σ[f1, ...., f7]x, Fy=Σ[f1, ...., f7]y. For 

rotation control, the moment of these forces is also required. This moment can be about a 

fixed point O or about the mass centre of the grid, with M = Σ(dix fi), or the sum of the cross 

product of the position vectors di and the force vectors fi, with i=1,2, …7. These interface 

forces and moments which are all shown in Figure 2constitute action-reaction pairs for the 
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actuator and flexible system. The forces are taken as positive when acting positively on the 

flexible system, with the springs in compression. 

As already mentioned, the wave-based control happens at a higher level. A relatively 

simple arrangement gives very good results, as will be seen. It is actually organised as three 

1-D WBC systems acting in parallel, one each for x, y and θ motions, as explained earlier in 

the description of Figure 1. Each 1-D system will then include the two distinct ‘launching 

wave’ and ‘returning wave’. The simplest, and the approach adopted in this paper, defines the 

three returning waves as 
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Here the Z terms are impedances with constant values in a given control system. The 

actual value is not critical: only the order of magnitude is significant. Varying the value 

provides some fine tuning of the final control system. Zx and Zy can be set to √(km), at least 

initially, where k is a representative stiffness of the springs in contact with the actuator, and m 

is a representative mass. In this work Zθ was set to √(10km).  

Then, for example, the x-motion component which the actuator sub-controller is asked to 

follow becomes 

 𝑥𝑥 = 1
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The addition of the returning wave components to the launch wave components of the 

actuator motion has two important effects. The first is that it causes the actuator to act like an 

active viscous damper for motion in the flexible system arriving back to the actuator. The 

equivalent viscous damping coefficients have values equal to the impedances. The second 

important effect is that, for a rest-to-rest manoeuvre, when, say, xref reaches its new value and 



becomes constant, the addition of the returning component quickly supplies the second half 

of the reference motion, causing the system to settle at the target position. In equations (1) to 

(3) the force or moment integrals becomes zero on settling, because the initial and final 

momenta (linear or angular) are zero. Thus at the new steady state, xss = ½ (xref + xss) and so 

xss=xref, as required. The same applies for the other two motion variables. In this way, planar 

position control and active vibration damping are seamlessly combined into a single motion 

of the actuator for all three aspects of the motion. 

Regarding the rotational motion, if the point B in Figure 1 is taken as the moment axis, the 

control system using the rotational returning wave, equation (3) behaves exactly as required 

provided there is no simultaneous translation of the actuator. If however there is simultaneous 

translation, there will often be a small steady-state error in the final angle. Obviously this 

could be corrected by a further rotational manoeuvre, but a more elegant solution is available. 

The source of the error is that, even in a rest-to-rest manoeuvre, angular momentum about B 

is not necessarily conserved if B moves, and so the integral in equation (3) does not return to 

zero exactly. The simplest way to avoid this (frequently small) error is to take moments, not 

about a moving axis such as B, but about a fixed axis, such as the original position of B 

(which is O in Figure 2). Alternatively, one could take moments about the mass centre of the 

grid, requiring continual recalculation of its position over time. Either solution ensures zero 

steady-state error in the final position. In either case, the system can then deal with 

simultaneous translational and rotational motion to a new target position with zero final error 

in all three target values. 

As in the 1-D case, the shape of the reference inputs over time is arbitrary. They can be 

steps, ramps or s-shaped parabolic signals, for example, provided only that the final steady-

state values correspond to the desired final position and orientation of the actuator. There is 

scope here to optimise the input waveforms, for example to achieve minimum time 



manoeuvres [9]. But simple inputs, such as ramps up to the target values, work so well in 

most cases that trying to do better is hardly worth the effort.  

If, instead of the actuator, it is desired to get another part of the system, such as the tip, to 

a target position and orientation, it is a matter of simple geometry to adjust the target final 

actuator positions so that the part of the system of interest ends up in the position required, 

with the correct target angle. (Obviously if the only requirement is that the tip be at target x 

and y values, there is an infinite number of angular positions θ which would achieve the same 

position.) 

 

4. Cross coupling of motions  

In complex flexible systems such as this, there is generally strong cross-coupling between 

translational and rotational motions. One of the motivations for this work, therefore, was to 

investigate how this cross coupling would affect the WBC in Figure 1, with its three parallel 

controllers, one for each aspect of the motion.  

Consider, for example, the flexible array starting with θ = 0, with the free sides parallel to 

the x and y axes. Suppose it is desired to move it in the y-direction only (with no 

displacement in the x and θ directions). The actuator’s y-motion has a shearing action on the 

flexible array, but it also has rotational (torque-like) effects, attempting, as it were, to keep 

the grid from rotating at the start and end of the manoeuvre. The actuator will experience a 

time-varying torque and it, in turn, is applying a torque in reaction.  

To achieve this y-motion under WBC there are at least three possibilities. In Figure 1 one 

could use exclusively the y component of the control system, with the x and θ controllers 

simply turned off. In other words, the entire launching and absorbing motions of the actuator 

are exclusively in the y-direction. There might be a requirement to use such a control strategy 

if the actuator had only one degree of freedom, in the direction of motion, and so x and 



θ motion were not available. As will be seen below, this simple, one-dimensional approach 

works as desired. 

If instead one assumes that the actuator has all three degrees of freedom, a second control 

option is to launch them as before, but, in addition to absorbing again the measured returning 

y-motion, to measure and absorb motions simultaneously. When this is implemented, it gives 

better vibration control, but in general the final positions will be incorrect. Furthermore the 

final errors in the three variables are difficult to predict. The x andθ absorbing take from the y 

absorbing. It is as if the actuator finds the easiest and fastest way to absorb the vibration 

energy and momentum, using whatever variables it can control, but in doing so allows the 

three component motions to become mixed in an unpredictable way. For this reason this 

option is unlikely to be used in practice, unless rapid, active vibration damping takes absolute 

priority over position control. 

A third option, which easily solves the mixing aspect, is to implement full control of all 

three variables, as in Figure 1, even though the reference inputs to both the θand x motions 

would be zero in this case. The θ and x controllers would still contribute to the absorbing, but 

now the reference input values (which happen to be zero) will ensure that the final values are 

correct. This third arrangement, as envisaged in Figure 1, will generally be the default when 

x, y andθ actuation are separately available. It gives very good results, as will be seen, 

combining good vibration control and zero settling error. 

Similar cross coupling effects between component motions will arise in any given 

manoeuvre, involving changes in one, two or three of the motion variables. In all cases, the 

configuration of Figure 1 gives the desired performance, simply and robustly. To illustrate 

the above some sample results will now be presented. 

5. Results 



To validate and illustrate the approach, a model consisting of a4x4 lattice geometry was set 

up, with 1-kg masses and interconnecting linear springs of k=10 N/m stiffness, with no 

damping, whether internal or external. The flexible part of the model therefore has 13 degrees 

of freedom (the actuator occupying 3 lattice points) and is very flexible, especially with such 

low-stiffness springs. In the control system the measurements of force and displacement were 

obtained from the model springs and actuator position. The responses to various reference 

inputs were then investigated, with different levels of control in the three parallel aspects of 

the WBC system shown in Figure 1. 

In the first case, control was applied in the x-direction only, with the only feedback 

coming from the x-returning wave, as if controlling the 2-D system with a 1-D control sys-

tem, with the control of the y and θ variables suppressed. Figure3 shows the tip response for a 

target displacement of 1m, with a ramp input waveform of 0.5 m/s. Also shown are the 

actuator motion producing and controlling the motion, the x-returning wave, xb on which this 

is based, and the y-motion of the tip. It can be seen that the system moves rapidly from rest to 

rest at the new target position with good vibration damping. 

 

Figure 3: System response for 1 m displacement using only x-direction returning waves in the 

controller. 



As discussed above, the x-motion also excites y and θ motions. Figure4 shows the tip 

response to the same reference input but now with the y-return and θ-return motions also 

acting on the actuator. Now the performance is even better, with negligible overshoot and 

very rapid settling at the target. Even though the final displacement of the actuator is 

identical, the fact that it also uses y and θ motions to control the vibration ensures a better 

response, especially in the active vibration damping but also in the absence of overshoot. 

 

 

Figure 4: The same manoeuvre as in Figure 3 but using x, y and θ return waves in the 

controller. 

 
For the results shown in Figure 5, the target tip displacements (reference inputs) in the x and y 

directions were 0.4m and 1m respectively. The actuator was allowed motion only in the x and 

y directions, with all rotational (θ) motion suppressed. In other words, all absorbing of 

returning motion had to be achieved by x and y motions exclusively. The x and y reference 

inputs were simultaneous ramps of different slopes. As can be seen, the tip response is very 

good. Also shown are the returning waves for each of the component motions. Although not 

shown here, the results are even better when the actuator is also allowed to rotate and WBC 

(with zero reference input) is simultaneously applied to the θ component of the motion. 



 

Figure 5: WBC of the grid which moves in both x and y directions in a plane using same 

returning waves in the controller 

 
Figure 6 shows a fairly rapid system rotation through 1 radian with all three returning 

motions used in the control system. Considering that this system is very flexible, with many 

degrees of freedom, zero damping, and a single actuator acting at only one corner, the rest-to-

rest transit and settling are remarkable. 

 
 

Figure 6: A system rotating through 1 radian using x, y and θ returning waves. 
 

Finally Figure 7 shows a sample response when all three component motions are applied and 

controlled simultaneously. In this case, the (quite arbitrary) target values were x= 1m, y=0.6m 

and θ=0.3rad, created by three ramped inputs of different rates (also arbitrary). Despite the 



simultaneous combination of different launching waves, the WBC control system achieves a 

very good response with a rapid transit to the new position, negligible overshoot in any of the 

variables, rapid settling, and zero steady-state error. 

 

 

Figure 7: WBC of the grid for a complex input as three-component reference of x, y and θ 

It is mentionable that although the goals of positioning and vibration suppression were 

achieved here, however a small residual vibration of relatively high frequency left in the 

system after some of the manoeuvres reach the target which could take a relatively long time 

to be absorbed completely. Given the dispersive nature of the flexible system, and the 

complete absence of any kind of damping in the model, the existence of such small lingering 

vibrations is hardly surprising. Rather, the surprise is that they are very small with the 

amplitude of order 10-4 m for, e.g., a 1-m displacement of the system in the directions x and 

y. The addition of even small internal damping will quickly eliminate these high frequency 

oscillations. The whole topic of residual vibrations in rest-to-rest manoeuvres under WBC is 

a topic of another ongoing study as a prospective publication associated with the current 

paper. So this subject is not considered in further detail here. 



In terms of stability, it should be noted that the presented control strategy is closed-loop 

and collocated with the actuator as the same as the previous work in the WBC area, which is 

one important reason for its stability. In fact, WBC combines the best features of open loop 

controllers (anticipating errors before they arise) and feedback control (which corrects for 

departures from desired behaviour, albeit using measurements taken at the actuator). But in 

so far as it has “feedback” it is not the conventional, output-error-correcting, negative 

feedback: rather it is a positive feedback which, in part, anticipates the error (tip overshoot 

and oscillation) and inhibits its occurring, in an inherently stable way. The signal for this 

“feedback” is obtained by processing two measurements made at the actuator in a special 

way. In fact, the arrangement resembling positive “feedback” is actually providing active 

vibration damping as well as position control as it moves the system the second half of the 

launch displacement leading to bringing the system to rest at target. It causes the actuator to 

behave, to a returning wave motion, as a passive damper, tuned to minimise reflection and 

maximise absorption of the returning wave, analogous to a matched impedance at the end of 

an electrical transmission line. This is also what makes the controller so stable.  

In this regard, a pole-zero analysis carried out by McKeown [17], also shows that this 

standard form of WBC pulls the poles, which previously, in the uncontrolled, undamped 

flexible system, lay on the imaginary axis in the s-plane, off the imaginary axis and into the 

left hand half to the s-plane. Indeed, a standard implementation of WBC completely 

eliminates the poles present in the uncontrolled flexible system (except for a single pole at the 

origin) and thereby brings about the stability of the system. 

In addition, although not displayed here, other aspects were also investigated in this study. 

The shape of the mass-spring array was changed, for example to make it long and thin, that 

is, more beam-like. Similarly satisfactory results were then obtained without having to 

change the control strategy. Also the values of mass and spring elements were varied, and 



again the same controller still gave very good results. This robustness to system changes is 

mainly due to the fact that the control law is based on the returning wave motion, which in 

turn is determined by the system dynamics, whatever they happen to be. The controller does 

not need to model them, or to know them. It simply waits, observes, and then moves to 

absorb them. This could be considered real-time system identification. 

 

6. Conclusion 

This work proved that a relatively simple generalisation of the WBC motion control strategy, 

despite the added challenge of the dynamics of the 2-D array system and its many degrees of 

freedom performs very effectively while it retains many attractive features of these control 

techniques. These considerable features include the speed of response, zero steady-state error, 

robustness to actuator limits, small overshoot, robustness to system changes, no requirement 

for a detailed system model, and rapid settling, all achieved with a simple, low-order 

controller. Finally preliminary results soon to be reported indicate that the same approach is 

easily extendable to the control of spatial flexible structures with deflections in 3D, where the 

controlled system has much more complex dynamics and the actuator has 6 degrees of 

freedom. 
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