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Abstract 

Locally resonant metamaterials (LMs) have received extensive attention for their 

extraordinary physical properties, while less study on their application in the field of 

collision exists. In this paper, we extend the application of LMs to field of structural 

collision and achieve the mitigation of impact force based on their negative effective 

mass property. We also propose a three-resonator metamaterial (TRM) to enhance the 

attenuation effect of impact stress waves. Based on the theoretical analysis, the width of 

the negative effective mass frequency regions of TRM is wider than those of 

single-resonator metamaterial (SRM) and dual-resonator metamaterial (DRM). In 

numerical cases, the superior performance of TRM is also validated based on the impact 

wave model and the non-convex multi-corner thin-walled column crash model 

compared with SRM and DRM. The multi-objective optimization analyses are also 

conducted to enhance the performance of TRM with high impact force mitigation, great 

improvement of vehicle crashworthiness and small LMs mass. 
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force; 
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1. Introduction 

Crashworthiness is a basic problem of vehicle safety, and numerous works on the 
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vehicle crashworthiness [1，2]
 
have been carried out. As plastic deformation of 

structure in collision absorbs substantial kinetic energy, energy-absorbing components 

are widely used in body structural to absorb kinetic energy and reduce occupant 

damage. A lot of studies in energy-absorbing structures including foam filling [3-5], 

honeycomb filling [6] and negative Poisson's ratio material filling [7] have been 

explored in the past. Although many works on energy absorption structure have been 

carried out, the studies to reduce the impact force are still rare. As the larger impact 

force means higher vehicle acceleration and greater risk of occupant damage, it is 

important to develop novel materials that can mitigate this transient dynamic load. In 

addition, the propagation of stress waves during the collision causes the mechanical 

deformation and failure of structure. Therefore, the realization of the mitigation of 

stress wave is essential to attenuate the impact force and protect the structure. 

As the man-made materials, LMs [8-15] have attracted broad interest from 

scholars in recent years for their special properties. Their properties are customized 

through special microstructures instead of chemically synthesized. The concept of 

LMs originates from the study of electromagnetic wave with negative permittivity, 

negative permeability and negative refractive index [16-19]. Liu et al. [20] firstly 

proposed the concept of locally resonant LMs that exhibits the band gaps at low 

frequency. The centimeter-sized local resonance composite structure exhibits effective 

negative elastic constants at certain frequency ranges. Norbert et al. [21] demonstrated 

the left-handed propagation property of a one-dimensional resonant LMs. Assouar et 

al. [22] studied two plate-type LMs that have the magical property of achieving the 
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high sound transmission loss. Based on the numerical and experiment studies, Chen et 

al. [23] showed the characteristics of stress wave propagation in a sandwich beam 

structure with local oscillators. The location and range of the band gaps of this 

structure can be manipulated through adjusting the local resonant frequencies of the 

oscillators. Zhu et al. [24], Huang and Sun [25] presented the approaches to represent 

the dynamic behavior of elastic metamaterials. The accuracy of their methods was 

demonstrated by comparing their theoretical results with the results of finite element 

analyses. Zhang et al. [26] studied the sound transmission loss in the membrane-type 

LMs. The results indicated that the transmission loss depends strongly on the 

attaching mass and the membrane properties. Wang et al. [27-29] studied the band 

gaps, transmission properties and effective mass density of two-dimensional LMs 

with the characteristics of comblike profile, chiral comblike interlayer and 

viscoelastic, respectively.  

In addition, recent studies showed that the LMs which exhibit the negative 

effective mass property can effectively attenuate the mechanical waves [30-35]. 

Therefore, the negative effective mass property is the key point to achieve the stress 

wave attenuation. Wang [36] proposed a new typical unit cell of LMs, which can be 

tuned to produce negative mass and negative modulus. Yao et al. [37] had realized the 

negative effective mass property of the spring mass system through experimental 

analysis, and the transmission property of mechanical wave in the low frequency 

range was examined. Li and Chan [38] developed and demonstrated the concept of 

simultaneous negative effective mass density and bulk modulus. Liu et al. [39] and 
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Zhai et al. [40] presented the existence of double-negative LMs.  

Although so many studies on LMs exist, there are few researches on the 

application of LMs to realize the impact load attenuation. In this paper, we apply the 

LMs to the field of structural collisions and apply the metamaterials to solve the 

problem of load attenuation that cannot be achieved with conventional materials.  

It is worth noting that there are many ways to improve the performance of LMs. 

The design of microstructure of LMs and the application of active control theory are 

two commonly used methods. The active control system can tailor the characteristics 

of LMs based on the demand in practical application, and enlarging the frequency 

regions of negative effective mass to improve the attenuation effects of LMs [49, 50]. 

In addition, the design of microstructure changes the micro-characteristics of LMs, 

and the macroscopic properties of LMs can be improved through designing the 

microscopic characteristics of structure. In this paper, the design of microstructure of 

LMs is the main content of our work.  

It is obvious that the negative effective mass property of LMs depends on their 

microstructure significantly. The single-resonator microstructure and dual-resonator 

microstructure were widely studied in the past [41, 42]. It is clear that the 

dual-resonator metamaterial (DRM) works better than the single-resonator 

metamaterial (SRM) for mechanical wave attenuation [43]. Obviously, the optimal 

design of microstructure can achieve a wide range of frequency attenuation, which is 

very effective for the mitigation of high frequency dynamic loads such as collision 

problems. In this paper, we propose a three-resonator metamaterial (TRM) under the 
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principle of maximizing the band gap regions. The mathematical model shows TRM 

has wider negative effective mass frequency regions than SRM and DRM. Numerical 

simulations of the impact wave model and the non-convex multi-corner thin-walled 

column crash model demonstrate the superior performance of TRM to SRM and 

DRM in frequency spectrum attenuation and impact force mitigation. Furthermore, 

the multi-objective optimization is conducted to obtain the optimal parameters of 

TRM to minimize the LMs mass, body acceleration and impact force. The 

improvement of the crashworthiness of the trolley model is proved clearly through the 

application of TRM. 

This paper is organized as follows: Theoretical studies of SRM, DRM and TRM 

are carried out in Section 2. In Sections 3 and 4, numerical examples of impact wave 

model and thin-walled structure crash model are studied to demonstrate the superior 

performance of TRM to SRM and DRM. In addition, the multi-objective optimization 

is carried out with this thin-walled crash model to improve its impact performance. 

Section 5 is mainly about the application of TRM on the trolley crash model. Finally, 

the conclusions are summarized in Section 6.  

2. Microstructure of LMs 

2.1. Single-resonator and dual-resonator LMs 

In this work, we study how the negative effective mass property of the 

microstructures of metamaterials affects their attenuation effects. For the better 

explanation, the concept of negative effective mass based on the single-resonator and 

dual-resonator microstructures is firstly illustrated.
 
Fig. 1 (a) shows the unit cell of 
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SRM that is comprised of rigid masses m1, m2 and linear spring k2. The displacements 

of the inner mass and outer mass are u1 and u2. A one-dimensional spring-mass lattice 

system consisting of the single-resonator microstructures is shown in Fig. 1(b). In this 

one-dimensional lattice system, the outer spring with connects each unit cell is k1, and 

the motion equations of the jth unit cell can be calculated as follows.  

(j) (j-1) (j+1) (j) (j) (j)

1 1 1 1 1 1 2 2 1
( 2 ) ( )mu k u u u k u u      (1) 

(j) (j) (j)

2 2 2 1 2
( )m u k u u   (2) 

where (j)

α
u  is the displacement of oscillator α (α=1 or 2) in the jth unit cell, k1 is the 

outer spring with connects each unit cell. Based on Bloch theory, the harmonic 

waveform of the displacement for unit cell (j+n)th must satisfy the following formula.  

(j+n) i(qx+nqa-ωt)

αα
u u e  (3) 

where (j+n)

α
u  is the displacement of oscillator α in the (j+n)th unit cell, ω is the angular 

frequency, q is the wavenumber, 
α

u is the displacement amplitude of the oscillator α 

and a is the lattice constant. We substitute Eq. (3) into Eqs. (1) and (2) to obtain the 

dispersion equation of the lattice system. 

2 2

2 2

2

2

( ) [( ) (1 )]
cos 1

2 ( ) 1
qa

    

  

 
 


  (4) 

where 
2 2

k m   is the locally resonant frequency of oscillator m2, and the mass 

ratio and spring stiffness ratio are θ=m2/m1 and δ=k2/k1. Due to the periodicity of the 

SRM, the attenuation effect of the SRM can be studied through studying the negative 

effective mass property of a single-resonator microstructure, and the effects of k1 are 

not considered. When this single-resonator lattice system is regarded as the 
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monoatomic lattice system, the effective mass of the single-resonator microstructure 

must satisfy the Eq. (5). 

1

2

2 (1 cos )
eff

k qa
m




   (5) 

Based on Eqs. (4) and (5), we can derive the control equation of dimensionless 

effective mass of the single-resonator microstructure that is the ratio of effective mass 

meff and static mass mst.  

2

2

2

2

eff

st

( )
1

1 1 ( )

m

m

 

  

 
   

  
  (6) 

where mst=m1+m2 is total static mass of one microstructure. Then, the motion ratio of 

inner mass m2 and outer mass m1 is obtained as follows: 

2

2

1 2

1

1 ( )

u

u  



  (7) 

Plot of dimensionless frequency ω/ω2 against dimensionless effective mass meff/mst is 

shown in Figs. 1(c). In Fig. 1(c), we take the parameter θ as 2. As the dimensionless 

frequency ω/ω2 approaches 1, a narrow band gap region where the effective mass 

becomes negative appears. It is clearly seen that the generation of negative effective 

mass is related to the motion mechanism of oscillators. In order to reveal this 

mechanism, the displacement ratio of m2 and m1 is shown in Fig. 1(d). From Fig. 1(d), 

when frequency ω is greater than ω2, the motions of m1 and m2 are out of phase, 

which implies that the mechanical wave of this frequency range cannot pass through 

the LMs. The wave energy is transferred and stored into the negative motions of the 

inner mass instead of propagating along the LMs. As a consequence, the negative 

mechanical motions block and reflect the incoming wave. Therefore, we call the 

javascript:;
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negative effective mass frequency regions the stopbands.  

As shown in Fig. 1(e), the unit cell of DRM that contains three masses can be 

seen as the coupling of two single-resonator unit cells. The rigid masses of the 

dual-resonator microstructure are m1, m2 and m3, and their displacements are u1, u2 and 

u3. The stiffness of each spring is k1, k2 and k3. Analogous to single-resonator lattice 

system, the motion equations of the jth unit cell of DRM can be written as follows. 

(j) (j-1) (j+1) (j) (j) (j)

1 1 31 1 1 1 3 1
( 2 ) ( )m u k u u u k u u      (8) 

(j) (j) (j)

1 22 3 2
( )m u k u u   (9) 

(j) (j) (j) (j) (j)

3 2 2 3 33 3 1
( 2 ) ( )m u k u u k u u     (10) 

Based on the same principle, the dispersion relation of the one dimensional DRM can 

be acquired as follow Eq. (11).  

22

3 1 22 2

2 2

2 2 1 1 1 2 1

(1 -( ) )( )
cos 1 (1 )

2 [1 ( ) ][1 ( / )( ) ]
qa

     

        


  

   
 (11) 

where 
2 2 2
= k m  is the local resonance frequency of m2. The stiffness and mass 

ratios are δ1= k2/k3, δ2= k2/k1, θ1= m2/m3, θ2= m2/m1 and θ3= m3/m1. Then, the 

effective mass of the dual-resonator microstructure can be obtained as follows. 

2

1 2 1 2

2 2

1 2 1 2 1 2 1 2 2 1 1 1 2 1

1 -( )
+

+ + + + [1 ( ) ][1 ( / )( ) ]

eff

st

m

m

    

             

 
  

    
 (12) 

The motion ratios of m2 to m1 and m3 to m1 are shown in Eqs. (13) and (14).  

2

2 2

1 2 1 1 1 1 1 2

1

1 ( ) (1 ( ) ( ) )

u

u         


   
 (13) 

2

23 1 2 1

2 2 2

1 1 1 1 2 2 2 1 2

2 1

2 3

1 ( )
( )( )

(1 1 )(1 ( ) ) (1 ( ) )( )

( ) 1

u

u

    

          



 

 
 

    

 

 (14) 
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Fig. 1(f) illustrates the plot of the dimensionless frequency ω/ω2 against 

dimensionless effective mass meff/mst. The parameters of mass and spring stiffness 

ratios θ1, θ3 and δ1 are assumed as 1, 0.8 and 0.2. It is obvious that there are two band 

gaps in Fig. 1(f), which means that DRM has wide stopbands.  

The displacement amplitude ratios of m2 to m1 and m3 to m1 are shown in Figs. 

1(g) and (h). The parameters are selected as θ1=1 and δ1=0.2 in Fig. 1(g) and θ1=1, 

θ3=0.8 and δ1=0.2 in Fig. 1(h). It is worth noting that both u2 and u3 are in phase with 

u1 at frequency lower than the first resonant frequency. However, when the frequency 

increases and occupies the region between the first and the second resonant 

frequencies, u3 is initially out of phase with u1 and then gradually becomes in phase 

with u1, and u2 is always out of phase with u1. When the frequency exceeds the second 

resonant frequency, u3 is out of phase with u1 and u2 is always in phase with u1. 

Therefore, by comparing Figs. 1 (g), (h) with Fig. 1 (f), it can be concluded that: (1) in 

the first band gap, m2 and m3 work within the same frequency range to block the 

incoming wave through their out of phase inertial forces; (2) in the second band gap, 

m2 works at the region below the second resonant frequency and m3 works at the 

range above the second resonant frequency to suppress the incoming wave.  
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Fig. 1. (a) Microstructure of SRM. (b) One dimensional single-resonator lattice 

system. (c) Curve of dimensionless negative effective mass of SRM. (d) Curve of the 

dimensionless frequency ω/ω2 against motion ratio u2/u1 of SRM with θ=2. (e) 

Microstructure of DRM. (f) Curve of dimensionless negative effective mass of DRM 

with θ1=1, θ3=0.8, δ1=0.2. (g) Plot of dimensionless frequency ω/ω2 against motion 

ratio u2/u1 of DRM with θ1=1, δ1=0.2. (h) Plot of dimensionless frequency ω/ω2 

against motion ratio u3/u1 of DRM with θ1=1, θ3=0.8, δ1=0.2.   

2.2. Three-resonator LMs 

As shown in Fig. 2(a), we propose a three-resonator microstructure that has four 

oscillators m1, m2, m3 and m4, and their movements are u1, u2, u3 and u4. The linear 

springs, which connect these rigid masses, are k1, k2, k3 and k4. Analogously, the 

control equations of oscillators of the jth unit cell are calculated as follows.  

(j) (j-1) (j+1) (j) (j) (j)

1 1 41 1 1 1 4 1
( 2 ) ( )m u k u u u k u u      (15) 

(j) (j) (j)

2 2 22 4
( )m u k u u   (16) 

(j) (j) (j)

3 3 33 4
( )m u k u u   (17) 

(j) (j) (j) (j) (j) (j) (j)

4 4 4 3 4 2 44 1 3 2
( ) ( ) ( )m u k u u k u u k u u       (18) 

The dispersion equation of the one dimensional TRM is obtained as Eq. (19). 
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2 3

2 2

3 2 2 2 3 3

32

4 2 2

2 3

2 22 2

3 3 3 32 2 2 2

2 2

2 3 2 3

cos 1 (1
( ) ( )

(1 )
1 ( ) 1 ( )

)
( ) ( )( ) ( )

1
2 2 1 ( ) 1 ( )

qa
r r

r

 

     



   

          

     

  


 
 

   
 

 (19) 

where stiffness and mass ratios are β2= k2/k1, β2= k3/k1, γ2= m2/m1, γ3= m3/m1，γ4= 

m4/m1, δ2= k2/k4, δ3= k3/k4, θ2= m2/m4 and θ3= m3/m4. The effective mass meff and 

dimensionless effective mass meff/mst of the new microstructure is acquired as Eqs. 

(20) and (21). 

32

2 2

2 3

2 22 2eff 1 4

3 3 3 32 2 2 2

2 2

2 3 2 3

1 4

1
1 ( ) 1 ( )

( ) ( )( ) ( )
1

2 2 1 ( ) 1 ( )

m m m

m m H



   

          

     

 
 

 

   
 

 

 (20) 

2 4 3 4 4

32

2 2

2 34

2 22 2

3 3 3 32 2 2 22 4 3 4 4

2 2

2 3 2 3

eff

st

1

1+ +

1+ +
1 ( ) 1 ( )

+
( ) ( )( ) ( )1+ +

1
2 2 1 ( ) 1 ( )

m

m     



   

              

     




 


   

 

 

 

(21) 

where H stands for 

32

2 2

2 3

2 22 2

3 3 3 32 2 2 2

2 2

2 3 2 3

1
1 ( ) 1 ( )

( ) ( )( ) ( )
1

2 2 1 ( ) 1 ( )



   

          

     

 
 

   
 

.  

The motion ratios of m2 to m1, m3 to m1 and m4 to m1 are acquired as follows. 

2 2

2 2 3 32

2 2 2 2

1 2 2 3 2 2 2 3 3

2 ( ) ( )1

1 ( ) (1 ( ) )( ( ) ( ) )

Hu

u

     

           
 

  
 (22) 

2 2

3 2 2 3 3

2 2 2 2

1 3 3 3 2 2 2 3 3

2 ( ) ( )1

1 ( ) (1 ( ) )( ( ) ( ) )

u H

u

     

           
 

  
 (23) 
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4

22

2 23 32 21

2 32 2

2 2 3 3 2 3

1

( )( )
1 ( ) ( )

2 2 1 ( ) 1 ( )

u

u      
 

       



   
 

 
(24) 

3D graphs of dimensionless effective mass meff/mst against dimensionless frequency 

ω/ω2 and ω/ω3 in global view is shown in Fig. 2(b). Three band gaps appear in the 3D 

graph, which implies TRM has larger negative effective mass frequency regions than 

SRM and DRM for its more band gaps. From Eq. (21), the value of meff/mst mainly 

depends on the design of parameters θ2, δ2, θ3, δ3 and γ4. Attention is focused on the 

effects of these parameters on the locations and the widths of the multiple band gaps. 

Surface plots of meff/mst against ω/ω2 and ω/ω3 in bottom view are applied to study the 

TRM in detail. In Fig. 2 (c), the blank areas represent the stopband regions and the 

other areas are the passband regions. The mass and stiffness ratios are assumed as 

θ2=0.8, θ3=0.8, γ4=0.8, δ2=1 and δ3=1. Because of the symmetry of the microstructure 

of TRM, parameters θ2, δ2 and θ3, δ3 have the same effects on the performance of 

TRM. Therefore, only parameters θ2, γ4 and δ2 are studied. In Fig. 2 (c) and (d), it is 

clear that the stopband regions increase as θ2 changes from 0.8 to 5, which means that 

θ2 has a positive effect on the negative effective mass frequency ranges. In addition, 

as θ2 increases, the stopband frequencies are also boosted in the ω/ω2 axis. From Figs. 

2 (c) and (e), the band gap regions are broadened as γ4 changes to 8 from 0.8. 

Furthermore, with the change of γ4, their negative effective mass frequencies remain 

the same. Figs. 2 (c) and (f) show that small δ2 broadens these band gaps. The 

reduction of δ2 enhances the stopband frequencies in the ω/ω2 axis. Therefore, the 

optimization of the stiffness and mass ratios of TRM is important to achieve the 
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maximum stopband regions within the target frequency ranges.   
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Fig. 2. (a) Microstructure of TRM. (b) 3D surface of dimensionless effective mass 

against dimensionless frequency of ω/ω2 and ω/ω3 in global view. (c) 3D surface of 

dimensionless effective mass against dimensionless frequency of ω/ω2 and ω/ω3 in 

bottom view with θ2=0.8, θ3=0.8, γ4=0.8, δ2=1, δ3=1. (d) θ2=5, θ3=0.8, γ4=0.8, δ2=1, 

δ3=1. (e) θ2=0.8, θ3=0.8, γ4=8, δ2=1, δ3=1. (f) θ2=0.8, θ3=0.8, γ4=0.8, δ2=0.2, δ3=1.  

 

Since the displacement amplitude ratios of 
2 1

u u  and 
3 1

u u  are very similar, 

only the studies on 
2 1

u u  are carried out. Figs. 3 and 4 are the surface plots of 
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motion ratios 
4 1

u u and 
2 1

u u  against ω/ω2 and ω/ω3. Among them, Figs. 3 (a) and 

4(a) are in the global view and the other figures are in the bottom view. When the 

frequency ω is in the range of the band gaps, the motions of the corresponding 

oscillators are out of phase. In other domain, their motions are in phase. 

In Figs. 3 (a)-(f), it is clear that the distribution of the band gap regions of 
4 1

u u  

is similar to that of the negative effective mass meff/mst. It means that when the 

negative effective mass appears, u4 is always out of phase with u1. The motion of m4 

always enhances the stopbands. As θ2 is increased from 0.8 to 4.0 in Figs. 3(b) and (c), 

and δ2 is reduced from 1.0 to 0.2 in Figs. 4 (b) and (d), the significant increase of band 

gap regions is achieved. These indicate that the enhancement of mass ratios and the 

reduction of stiffness ratios are in favor of the reverse motion of the inner mass m4 to 

the outer mass m1.  

As shown in Figs. 4, the band gaps of 
2 1

u u  are quite different from that of 

meff/mst, which means that the motion of m2 is complicated compared with m4. In Fig. 

3 (b) and Fig. 4 (b), when ω/ω2 =0.5 and ω/ω3 =0.5, the motions of m2 and m4 are all 

out of phase with m1. m2 and m4 work together to block the incoming wave through 

their out of phase inertial forces. When ω/ω2 =1 and ω/ω3 =4, the motion of m2 is out 

of phase with m1 and m4 is in phase with m1. Only m2 works to suppress the incoming 

wave through its own inertia force. When ω/ω2 =2 and ω/ω3 =0, the motion of m2 is in 

phase with m1 and m4 is out of phase with m1. Only m4 works to compress the incident 

wave.  

Despites these different band gap regions and motion behavior of m2 and m4, the 
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parameter analyses show their similar results achieved by changing the same 

parameters. The broad band gaps of 
2 1

u u  can be observed when θ2 and θ3 are 

increased from 0.8 to 4.0 in Figs. 4(b) - (d), and δ2 and δ4 are decreased from 1.0 to 

0.2 in Figs. 4(b), (e) and (f). The effect of 
4 1

u u  on the band gaps is the same with 

2 1
u u . The increase of mass ratios and the reduction of stiffness ratios are beneficial 

to the reverse motion of m2 and m1, which is effective to create the negative mass. 

These studies conducted in this section can provide a useful guidance to achieve wide 

band gaps in the desired frequency regions.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3. (a) 3D surface of motion ratio of u4/u1 against dimensionless frequency of 

ω/ω2 and ω/ω3 in global view. (b) 3D surface of motion ratio of u4/u1 against 

dimensionless frequency of ω/ω2 and ω/ω3 in bottom view with θ2=0.8, θ3=0.8, 

δ2=1, δ3=1. (c) θ2=4, θ3=0.8, δ2=1, δ3=1. (d) θ2=0.8, θ3=0.8, δ2=0.2, δ3=1. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 4. (a) 3D surface of motion ratio of u2/u1 against dimensionless frequency of 

ω/ω2 and ω/ω3 in global view. (b) 3D surface of motion ratio of u2/u1 against 

dimensionless frequency of ω/ω2 and ω/ω3 in bottom view with θ2=0.8, θ3=0.8, 

δ2=1, δ3=1. (c) θ2=4, θ3=0.8, δ2=1, δ3=1. (d) θ2=0.8, θ3=4, δ2=1, δ3=1. (e) θ2=0.8, 

θ3=0.8, δ2=0.2, δ3=1. (f) θ2=0.8, θ3=0.8, δ2=1, δ3=0.2. 
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2. The impact wave model 

2.1. The mitigation indicators of impact force  

In order to comprehensively assess the attenuation effect of LMs, it is necessary 

to define the evaluation indicators. Refer to the crashworthiness indicators studied in 

previous thin-wall crashworthiness researches [44, 45], the similar impact force 

attenuation indexes for LMs are proposed in this paper. These concepts include the 

peak impact force (PIF) and the mitigation impact force (MIF). The MIF is defined as 

follows. 

O AMIF PIF PIF   (25) 

where PIFO is the peak impact force of the original model and PIFA is the peak 

impact force of the LMs model. A large MIF means a great impact force mitigation 

achieved by the LMs. The target is to maximize the MIF to protect the structure 

behind the LMs. At the same time, the LMs mass should also be minimized to achieve 

lightweight design of LMs. However, as we all know, great attenuation requires large 

LMs mass. Then, the specific impact force mitigation (SFM) is defined as the 

attenuation of impact force per unit mass of the LMs to explain the relationship 

between the impact force mitigation and the LMs mass. It can be written as follows. 

SFM MIF M  (26) 

where M is the total static mass of the LMs.  

2.2. Impact with one dimensional model 

We further study the attenuation effect of SRM, DRM and TRM with the impact 
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wave model. The impact model contains a total of 400 unit cells, the first 100 unit 

cells is the Medium 1, the rear 290 unit cells (from unit cell #111 to #400) is the 

Medium 2 and the remaining 10 unit cells are applied to install the LMs (internal 

mass and outer mass for all LMs are 0.03 kg). The force-controlled impact wave of 

do(t-t ) t-
F Fe (t0 = 0.5 ms, td =0.1 ms) with the duration time 4 ms, is applied to the unit 

cell #1. We acquire the impact force response at the unit cell #130. 

The results of SRM, DRM and TRM are shown in Fig. 5. Since one unit cell of 

TRM can be seen as the combination of one unit cell of SRM and one unit cell of 

DRM, the comparative study of 1-DRM: (1.184, 2.665)*1 kN/mm + 1-SRM: 

(0.296)*1 kN/mm and 1-TRM: (0.296, 1.184, 2.665)*1 kN/mm is carried out. 

Notations of “1-DRM: (1.184, 2.665)*1 kN/mm + 1-SRM: (0.296)*1 kN/mm” mean 

that this model is composed by one dual-resonator unit cell and one single-resonator 

unit cell. The spring stiffness of this dual-resonator unit cell are k2 = 1.184 kN/m and 

k3 = 2.665 kN/m, and the spring stiffness for this single-resonator unit cell is k2 = 

0.296 kN/m.  

Fig. 5(a) presents the attenuation results of these two LMs. Both of these two 

models have three band gaps. Similar frequency attenuation regions are achieved by 

1-DRM: (1.184, 2.665)*1 kN/mm + 1-SRM: (0.296)*1 kN/mm and 1-TRM: (0.296, 

1.184, 2.665)*1 kN/mm. It means that these two LMs have similar attenuation effects. 

From Fig. 5(b), the maximum impact force of the original model is 303N. Drop of 

peak impact force is achieved for these two LMs. The maximum impact force of 

1-DRM: (1.184, 2.665)*1 kN/mm + 1-SRM: (0.296)*1 kN/mm and 1-TRM: (0.296, 
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1.184, 2.665)*1 kN/mm are 283.0 N and 284.5 N, in which SFM value are 133.3 N/kg 

and 154.2 N/kg. Together with Fig. 5 (a), it is clear that the frequency spectrum 

attenuation and the impact force mitigation of these two LMs are close. However, the 

higher SFM value of 1-TRM: (0.296, 1.184, 2.665)*1 kN/mm compared with 1-DRM: 

(1.184, 2.665)*1 kN/mm + 1-SRM: (0.296)*1 kN/mm proves that TRM has better 

efficiency than SRM and DRM. This also implies that the TRM will certainly be thin 

and light. Mass and volume savings of TRM are mainly due to the lesser use of unit 

cells.  
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(d) 

Fig. 5. (a) Attenuation of frequency spectrum with one DRM + one SRM unit cells and one TRM 

unit cell. (b) Mitigation of impact force with one DRM + one SRM unit cells and one TRM unit 

cell. (c) Attenuation of frequency spectrum with ten SRM unit cells, ten DRM unit cells and ten 

TRM unit cells. (d) Mitigation of impact force with ten SRM unit cells, ten DRM unit cells and ten 

TRM unit cells. 

As shown in Figs. 5(c) and (d), the attenuation effect of SRM, DRM and TRM 
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with the same ten unit cells is studied. From Figs. 5(c), 10-SRM: (1.184)*10 kN/mm 

has one band gap, 10-DRM: (1.184, 2.665)*10 kN/mm has two attenuation regions of 

frequency spectrum, while 10-TRM: (1.184, 2.665, 7.402)*10 kN/mm has three 

stopbands. It is clear that the frequency spectrum attenuation regions of 10-TRM: 

(1.184, 2.665, 7.402)*10 kN/mm is the largest. As can be seen from Fig. 5(d), the 

maximum impact force of 10-SRM: (1.184)*10 kN/mm, 10-DRM: (1.184, 2.665)*10 

kN/mm and 10-TRM: (1.184, 2.665, 7.402)*10 kN/mm are 203 N, 176 N and 138 N. 

With the same volume, the better performance of TRM is reflected.  

4. The thin-walled column impact model  

In this section, we study the attenuation effect of LMs on the practical crash 

condition. As shown in Fig. 6(a), the non-convex multi-corner thin-walled column 

structure [46], which is fully constrained at one end, is applied in the crash model. 

The materials of part 1 and part 2 are AL, that Young's modulus, Poisson's ratio and 

density are 2700 Mpa, 0.3 and 2.7e-6 kg/mm
3
. The material of part 3 is steel, that 

material constants are 21000 Mpa, 0.3 and 7.85e-6 kg/mm
3 

for Young's modulus, 

Poisson's ratio and density. The thickness of part 1, part 2 and part 3 is 1.0 mm. As the 

deformation of the thin-walled column structure during the collision is small, it can be 

seen as the elastic deformation. Therefore, the material nonlinearity is not considered 

in this model. A rigid plate that mass is 1.6kg vertical impacts this thin-walled 

structure with the initial speed of 50 km/s. Three types of LMs are applied in part 3, 

respectively. We obtain the transient dynamic load of the structure.  
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Fig. 6. (a) Multi-corner thin-walled column crash model with LMs. (b) Impact force attenuation 

for twelve SRM unit cells, six DRM unit cells, four TRM unit cells and ten TRM unit cells. (c) 

Impact force attenuation with thirty SRM, DRM, TRM unit cells and designed TRM. 

For all LMs unit cells, the outer masses and internal oscillator masses are 0.01 kg 

and 0.03 kg, respectively. Twelve SRM unit cells, six DRM unit cells and four TR 

unit cells are applied to further study the performance of TRM. Fig. 6(b) compares the 

results of 12-SRM: (1.184)*4, (2.665)*4, (4.737)*4 kN/mm, 6-DRM: (1.184, 

2.665)*2, (1.184, 4.737)*2, (2.665, 4.737)*2 kN/mm and 4-TRM: (1.184, 2.665, 

4.737)*4 kN/mm. The maximum impact force of original model is 122.89 kN. 

Significant drop of impact force occurs for all LMs models from 0.3 ms to 1 ms, and 

decrease of impact force implies the protection of this structure. Peak impact forces of 

SRM, DRM and TRM models are 117.28 kN, 118.01 kN and 115.51 kN, in which 

SFM values are 11.69 kN/kg, 11.62 kN/kg, and 18.45 kN/kg. The superior 
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performance of TRM to SRM and DRM is demonstrated for its higher SFM value and 

fewer unit cells. Fig. 6(c) illustrates the results of 30-SRM: (1.184)*30 kN/mm, 

30-DRM: (1.184, 2.665)*30 kN/mm and 30-TRM: (1.184, 2.665, 4.737)*30 kN/mm. 

The maximum impact forces of SRM, DRM and TRM are 102.18 kN, 98.50 kN and 

84.19 kN. With the same thirty unit cells, higher impact force attenuation is achieved 

by TRM.  

The peak impact force, LMs mass and SFM value of the 30-TRM: (1.184, 2.665, 

4.737)*30 kN/mm are 84.19 kN, 2.7 kg and 14.33 kN/kg. This high impact force 

mitigation and small SFM value implies that a great attenuation effect requires a large 

LMs mass. However, the excessive mass limits the application of LMs on the real 

crash condition. Therefore, it is of great significance to maximize the impact force 

mitigation and minimize the LMs mass. The transient dynamic load mitigation 

behavior of TRM depends mainly on the design parameters of spring stiffness and 

oscillator mass. In this paper, we design the TRM by seeking the optimum 

combination of these parameters. The NSGA-II [47, 48] is applied as the optimization 

theory. Genetic algorithm (GA) is widely used in optimization problem that is based 

on Darwin's biological evolution and survival theory. The non-dominated sorting GA 

II (NSGA-II) [47, 48] is an extended algorithm for GA to solve multi-objective 

optimization problem, which was proposed in 2002. The success of the NSGA-II is 

largely due to the insertion of the concept of Pareto-optimality into the selection 

mechanism, and using the elite strategy and the crowding distance operator to rank the 

population. The crowding operator makes NSGA-II faster obtain the desired Pareto 
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optimal solutions with less computational complexity. The optimization goals are to 

minimize the total static mass of LMs and maximize the MIF. In the optimization 

process, the outer mass m1 of theses unit cells remains the same, the oscillator masses 

m2, m3, m4 and spring stiffness k2, k3, k4 are set as the design variables. The initial 

value and design space of each variable are shown in Table 1.  

The whole optimization process is summarized as Fig. 7. In Fig. 7, the variables, 

design space and optimization goals are determined first based on the microstructure 

of TRM and our needs. Then, the parameterized model is established with TRM and 

this thin-walled crash structure. The multi-objective optimization analysis is carried 

out to obtain the optimal combination of spring stiffness and oscillator mass. After 

that, if the maximum iteration is achieved, optimization results will be verified by 

comparing with the 30-TRM: (1.184, 2.665, 4.737)*30 kN/mm to determine whether 

these non-dominated solutions are reasonable. If so, the design of TRM ends. We will 

obtain the optimal solution based on our needs. Otherwise, re-optimize the TRM 

parameters again until the solutions meet the requirements. Finally, the designed 

TRM with high impact force mitigation and small LMs mass is acquired.  

 

Table 1. The initial value and design space of each variable 

Design variable Initial value Lower Upper 

k2(kN/mm) 1.184 0.098 8.71 

k3(kN/mm) 2.665 0.098 8.71 

k4 (kN/mm) 4.737 0.89 12.34 

m2 (kg) 0.03 0.01 0.05 

m3 (kg) 0.03 0.01 0.05 

m4 (kg) 0.03 0.01 0.05 
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Fig. 7. Optimization process of the parameterized model 

The mathematical model of the multi-objective optimization is described as 

follows: 
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 (27) 

The Pareto frontier of the results of this model is illustrated in Fig. 8. As shown 

in Fig. 8, fifty feasible solutions in the design space are exhibited for us to select. 

Based on Eq. (26), the SFM of all solutions, in which the values are between 18.31 

kN/kg and 32.41 kN/kg, are calculated. In order to better study these results, four 

non-dominated solutions, in which the largest and smallest values of SFM are 

included, are shown in Table 2. The results of MIF, PIFE and M are also listed. From 
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Table 2, the option 1 should be selected if we prefer to obtain the maximum 

mitigation of impact force. If the mass of LMs is the critical factor, the option 4 is 

better than others. If the mass factors and the mitigation effect are equally important, 

options 2 and 3 should be considered. In this paper, we want to obtain a small peak 

impact force with small LMs mass. Therefore, the option 3 is selected. For this 

solution, parameters k2, k3, k4, m2, m3 and m4 are 3.37 kN/mm, 1.37 kN/mm, 1.85 

kN/mm, 0.016 kg, 0.018 kg and 0.027 kg. Compared with 30-TRM: (1.184, 2.665, 

4.737)*30 kN/mm, the SFM value of designed TRM increases from 14.33 kN/kg to 

29.51 kN/kg. In addition, Fig. 6(c) shows the significant decrease of impact force. The 

MIF, PIFE and LMs mass of the designed TRM are 45.47 kN, 77.32 kN, and 1.54kg, 

respectively. The better performance of the designed TRM with high impact force 

mitigation and lightweight LMs is achieved.   

1 1.5 2 2.5 3
65

70

75

80

85

90

Im
p
a
c
t 
fo

rc
e
 (

k
N

)

Mass (kg)

 

 

Pareto frontier

 

Fig. 8. Pareto frontier solutions of impact force against LMs mass. 

 

Table 2 Comparison of Pareto-optimal solutions 

Design variables 
30-TRM: (1.184, 2.665, 

4.737)*30 kN/mm 
Option 1 Option 2 Option 3 Option 4 

k2 (kN/mm) 1.184 3.395 2.494 1.373 0.998 

k3 (kN/mm) 2.665 3.625 1.314 1.852 1.039 

k4 (kN/mm) 4.737 4.775 3.741 3.696 3.642 

m2 (kg) 0.03 0.0347 0.0180 0.0159 0.0100 

m3 (kg) 0.03 0.0436 0.0411 0.0177 0.0154 
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m4 (kg) 0.03 0.0300 0.0187 0.0265 0.0124 

SFM (kN/kg) 14.33 18.31 23.19 29.52 32.41 

MIF (kN) 38.70 52.32 48.22 45.47 37.36 

PIFE (kN) 84.18 70.57 74.67 77.32 85.53 

M (kg) 2.70 2.86 2.08 1.54 1.15 

5. The trolley crash model 

To further study the mitigation effect of LMs, we apply the TRM on the trolley 

crash condition to enhance the vehicle crashworthiness. For the vehicle crash 

condition, the vehicle acceleration has a great effect on the safety of passengers. The 

large peak acceleration may cause the serious injuries or even death of passengers in 

the collision. Therefore, the relatively small peak acceleration is urgently needed in 

the design of the vehicle crash. As we know, a linear relationship between the body 

acceleration and the impact force exists based on the Newton's second law. Therefore, 

in this section, we apply the LMs to reduce the peak acceleration. 

Impact analysis is performed with one trolley model and two impact beam 

structures. As shown in Figs. 9 (a) and (b), the trolley with the weight of 500 kg 

impacts the rigid wall with the initial speed of 50 km/h. Two TRMs are installed in 

the beams. The material of the beams is dual-phase steel HC340/590DP that Young's 

modulus, Poisson's ratio and density are 21000 Mpa, 0.3 and 7.85e-6 kg/mm
3
, and 

their thickness is 2.2 mm. The effective stress and effective strain curve of this 

dual-phase steel is shown in Figs. 9 (c). The entire LMs system contains 784 unit cells. 

The parameters of k2, k3, k4, m2, m3 and m4 of the LMs model are 1.184 kN/mm, 2.665 

kN/mm, 4.737 kN/mm, 0.02 kg, 0.02 kg and 0.02 kg. Fig. 10 (b) and Table 4 show 

the results of this initial TRM model. From Fig. 10 (b), it is clearly observed that a 
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significant drop of acceleration appears at 0~2 ms compared with the original trolley 

model. The drop of acceleration is from 187.91 g to 127.66 g. The high performance 

of TRM in the improvement of crashworthiness is clearly proved. 

Next, the multi-objective optimization analysis is carried out to reduce the mass 

of LMs. The ranges of each parameter are shown in Table 3. Minimization of the peak 

acceleration of the trolley and the LMs mass are set as the targets. Multi-objective 

optimization model is built by combining the parameterized model and the NSGA-II. 

The whole optimization process of the trolley model is the same as the above 

thin-walled structure crash model. 
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Fig. 9. (a) The trolley crash model, (b) The impact beam with LMs, (c) The effective 

stress and effective strain curve of dual-phase steel HC340/590DP. 

 

 

Table 3. The initial value and range of each variable 

Design variable Initial value Lower Upper 

k2(kN/mm) 0.790 0.079 8.39 

k3(kN/mm) 1.776 0.079 8.39 
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k4 (kN/mm) 3.158 0.202 12.08 

m2 (kg) 0.02 0.008 0.034 

m3 (kg) 0.02 0.008 0.034 

m4 (kg) 0.02 0.008 0.034 

Fifty feasible solutions are shown in Fig. 10 (a) and an optimum solution is 

selected for its small peak acceleration and lightweight LMs. Fig. 10 and Table 4 

illustrate that the peak acceleration of the designed trolley model is reduced from 

187.91 g to 126.03 g compared with the original model, which decrease ratio is 

32.93%. In addition, the mass of the designed TRM also drops from 47.00 kg to 36.26 

kg. From Table 5, the detailed parameters of the designed TRM are k2=1.07 kN/mm, 

k3=4.77 kN/mm, k4=5.54 kN/mm, m2=0.014 kg, m3=0.009 kg and m4=0.012 kg. It is 

obvious that the performance of the designed TRM is better than the initial TRM. We 

can achieve the excellent performance of vehicle crashworthiness by simply adding 

the designed TRM to the impact beams of the trolley model.  

20 30 40 50 60 70
110

115

120

125

130

135

140

A
c
c
e
le

ra
ti
o
n
 (

g
)

Mass (kg)

 

 

Pareto frontier

 

0 1 2 3 4 5
-50

0

50

100

150

200

A
c
c
e
le

ra
ti
o
n
 (

g
)

Time (ms)

 

 

Original

Initial TRM

Designed TRM

 

Fig. 10. (a) Pareto frontier of trolley acceleration against LMs mass, (b) 

Acceleration response of different trolley models. 

 

Table 4. Numerical results of the initial TRM and the designed TRM 

  Peak acceleration (g) Decrease ratio (%) Mass (kg) 

Original 187.91 —— —— 

Initial TRM 127.66 32.00 47.00 

Designed TRM 126.03 32.93 36.26 

 

Table 5. The optimum combination of design parameters 
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k2 (kN/mm) k3 (kN/mm) k4 (kN/mm) m2 (kg) m3 (kg) m4 (kg) 

1.07 4.77 5.54 0.014 0.009 0.012 

 

6. Conclusion 

In this paper, the LMs are applied to achieve the impact force mitigation, and we 

propose a newly designed three-resonator metamaterial (TRM) to enhance the 

attenuation effect. Theoretical analysis shows its wide negative effective mass 

frequency regions and wide stopbands. Compared with the single-resonator 

metamaterial (SRM) and dual-resonator metamaterial (DRM), the advantages of TRM 

are more obvious in manipulating the impact stress wave. Numerical results of impact 

wave model and thin-walled column crash model demonstrate its superior 

performance compared with SRM and DRM in terms of high SFM value. Furthermore, 

multi-objective optimization analyses are carried out to design the TRM, and great 

improvement of these crash models with high impact force mitigation and light LMs 

mass is achieved.  
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