
Unifying Theories of Programming that
Distinguish Nontermination and Abort

Ian J. Hayes1, Steve E. Dunne2, and Larissa Meinicke3

1 The University of Queensland, Brisbane, 4072, Australia
2 School of Computing, University of Teesside, Middlesbrough, TS1 3BA, UK

3 Macquarie University, Sydney, Australia

Abstract. In this paper we focus on the relationship between a number of speci-
fication models. The models are formulated in the Unifying Theories of Program-
ming of Hoare and He, but correspond to widely used specification models. We
cover issues such as partial correctness, total correctness, and general correctness.
The properties we use to distinguish the models are these:

– whether they allow the specification of assumptions about the initial state
outside of which no guarantees are given about the behaviour of the program,
i.e., the program may “abort”;

– whether a specification may allow or even require nontermination as a valid
(non-aborting) outcome; and

– whether they allow the expression of tests or enabling conditions, outside of
which the program has no possible behaviour.

When considering termination, we consider both an abstract model, which only
distinguishes whether a program terminates or not, as well as models that include
a notion of time: either abstract time representing a notion of progress or real-
time.

1 Introduction

The aim of this paper is to better understand the relationships between a number of mod-
els of program specifications. We are interested in whether they can express properties
such as total correctness, partial correctness, general correctness, timing properties, and
reactive behaviour. As a framework to relate these models we use Hoare and He’s Uni-
fying Theories of Programming (UTP) [1], because this theory is general enough to
do this succinctly.4 Section 2 addresses UTP designs (or specifications), which support
total-correctness specifications in the form of a precondition and a pre-post relation.
These correspond to specifications in VDM [2], the refinement calculus [3–6], and B
[7]. Section 3 examines Z specifications [8, 9], which form the least expressive model
considered here.

Section 4 introduces a new model that extends designs to distinguish abort and non-
termination; this allows specification of both total- and partial-correctness properties.

4 The UTP models that we consider are based on homogeneous relations between states. These
are not rich enough to express both demonic and angelic choice simultaneously, which is possi-
ble in predicate transformer models, but such relational models are sufficient for the properties
explored in this paper.

Extended Designs

Timed Designs

Timed Reactive Designs

General Correctness
PrescriptionsUTP Designs

Z Schemas Object−Z Schemas

Fig. 1. Relationships between models: most general at the bottom

Extended designs can also express general-correctness properties. General correctness
allows a termination set to be defined, but does not model a program aborting. General
correctness is explored in Section 5, and Section 6 highlights the distinction between
an assumption on the initial state and a termination set.

Section 7 generalises extended designs to allow timing properties to be expressed
by using an observation of the time, τ , with τ ′ =∞ signifying nontermination; this ap-
proach is similar to that used by Hehner [10]. Section 8 generalises this further to allow
the expression of reactive properties of traces of the program variables over time; this
model corresponds to the real-time refinement calculus [11–15]. Figure 1 summarises
the relationships between the models graphically.

Before getting into the details of the models, we warn the reader that the literature
on the different models uses the term “precondition” in various different ways. It may
be any of

– an assumption: a condition characterising those initial states from which the pro-
gram is required to work properly or not be enabled, but outside of which it may
“abort” (for example, by crashing), or terminate capriciously with an incorrect re-
sult, or fail to terminate at all by executing forever;

– a termination set: the initial states from which termination is required;
– an enabling condition (or guard or test): execution can only begin from initial states

satisfying the condition (i.e., it is infeasible outside the enabling condition); or
– combinations of the above.

In all cases it is a predicate on the initial state. These different interpretations of the
term “precondition” can lead to misunderstandings when moving from one model to
another. One aim of this paper is to clarify these distinctions by making it clear how
“precondition” is interpreted in each model.

Syntactic substitution. We use the notation r
[e

v

]
to stand for the relation r with every

free occurrence of the variable name v replaced by the expression e. This can also be
generalised so that v is a list of variable names and e a corresponding list of expressions.

2 UTP Designs

In Hoare and He’s Unifying Theories of Programming (UTP), designs (or specifica-
tions) and programs are modelled via relations between the before and after program
states [1]. A special boolean observation okay is used to model program termination,
which in the model is indistinguishable from the program not aborting. Hoare and He
[1] also use the term stable. A design has the syntax (p ` w), where p is a single-state
predicate on the before-values of the program variables and w characterises a relation
between before- and after-values of the program variables.5 For UTP designs the pre-
condition, p, represents both an assumption on the initial state and the set of initial
states from which termination is required. The semantics of a design is given by a rela-
tion characterised by the predicate

okay ∧ p⇒ okay′ ∧ w , (1)

where unprimed variable names correspond to the initial values of the variables and
primed names to their final values. If the program starts (i.e., okay holds) in an initial
state in which p holds, the program will terminate (i.e., okay′ will hold) and relation w
will hold between the initial and final states. Neither p nor w may refer to the obser-
vations okay and okay′.6 Designs only model total correctness. To simplify the presen-
tation below, we do not distinguish between a relation and the predicate characterising
that relation.

A design (p0 ` w0) is refined by another design (p1 ` w1), written

(p0 ` w0) v (p1 ` w1) ,

provided the semantic relation defined by the latter implies (is included in) the semantic
relation defined by the former, that is,

[(okay ∧ p1 ⇒ okay′ ∧ w1)⇒ (okay ∧ p0 ⇒ okay′ ∧ w0)] , (2)

where, as in Hoare and He [1], the notation [P] stands for the universal quantification
of P over all variables in the alphabet (including okay and okay′). Refinement condition
(2) holds if and only if

[p0 ⇒ (p1 ∧ (w1 ⇒ w0))] . (3)
5 Hoare and He [1] allow p to be a relation in general, but then introduce a constraint (H3) that

requires p to be single-state. The designs we describe here are thus their H3-designs.
6 Allowing p and w to refer to okay and okay′ doesn’t add anything because (p ` w) is semanti-

cally equivalent to (p
[

true
okay

]
` w
[

true,true
okay,okay′

]
).

There are three interesting extreme cases of designs:

abortUTP =̂ (false ` true)
terminatesUTP =̂ (true ` true)

magicUTP =̂ (true ` false)

UTP designs form a complete lattice under the refinement ordering, with least element
abortUTP and greatest element magicUTP. The design terminatesUTP is the specifica-
tion that guarantees termination but nothing else. Note that the design (false ` w) is
semantically equivalent to abortUTP for any relation w. A design is infeasible in any
state, v, for which the precondition p holds but the relation w doesn’t relate v to any
final state, i.e., the set of infeasible states are those satisfying p ∧ ¬ (∃ v′ • w). The
design magicUTP is everywhere infeasible.

3 Z specifications

Let S be a Z schema [8, 9] representing the program state, then the Z schema

Z
S
S′

R

can be used as a specification. Here S′ stands for S with all components decorated with
a prime, and R is a predicate relating the components of S and S′. To save space we
write the above schema in its equivalent horizontal form: [S; S′ | R].

In Z, the precondition of an operation is the predicate (∃ S′ • R), i.e., any initial state
for which there exists a corresponding final state. The precondition is the domain of the
relation R. Under the conventional so-called contract, or non-blocking, interpretation of
a Z operation schema [16], a precondition in Z represents, as for a UTP design, both
an assumption on the initial state and the set of initial states on which termination is
required. Thus the schema Z above is refined by a schema [S; S′ | Q], i.e., [S; S′ | R] v
[S; S′ | Q], provided

[(∃ S′ • R)⇒ ((∃ S′ • Q) ∧ (Q⇒ R))] .

Relating Z schemas and designs. Any Z schema of this form can be uniquely mapped
to a UTP design by the function ZD defined as follows.

ZD([S; S′ | R]) =̂ ((∃ S′ • R) ` R)

This mapping preserves the refinement ordering, and the image of the mapping forms a
subtheory of designs [1, Chap. 4].

There are two interesting extreme cases:

abortZ =̂ [S; S′ | false]
terminatesZ =̂ [S; S′ | true]

where abortZ is the least program in the refinement ordering. These schemas corre-
spond to their equivalents using designs, i.e.,

ZD(abortZ) = abortUTP

ZD(terminatesZ) = terminatesUTP

but note that one cannot represent magic by a Z specification. More generally, Z cannot
represent infeasible specifications and hence the Z model is not as expressive as UTP
designs (or VDM pre/post specifications, or B specifications).

In Object-Z [17, 18] operations are always terminating and the domain of the rela-
tion R is treated as the operation’s enabling condition7. Hence for Object-Z the schema
Z above is mapped to a design as follows:

OZD([S; S′ | R]) =̂ (true ` R) .

In the Object-Z model one can express infeasible specifications, although all specifica-
tions are terminating and non-aborting.

4 Distinguishing nontermination and abort

For reactive and real-time programs, it is often desirable to distinguish between abort
and nontermination, because nontermination can be a desirable property that one would
like to allow or even require in some circumstances. Even in the non-reactive case,
one would like to be able to specify heuristic search problems, where if the program
terminates, it returns a valid answer to a query, but the program is not guaranteed to
terminate for all queries. It is not possible to specify such programs using designs.

An important distinction between nontermination and abortion is that, while the
former may sometimes be a desirable property, the latter never is, so while a specifica-
tion may sometimes tolerate abortion, it should never demand it. Even the specification
abortUTP, while everywhere admitting abortion, does not actually demand it. So while
some of our new constructs in this paper allow a specification sometimes to demand
nontermination, none of them provides a means of demanding abortion.

To allow such specifications to be expressed, we extend the model to allow nonter-
mination and a program aborting to be distinguished. To do this, we use the boolean
observation term′ to model termination, and the boolean observation ok′ to model the
program not aborting. Informally ok′ ∧ term′ in this model is equivalent to okay′ for
the UTP design model. As with the UTP design model, we also have the observations
ok, indicating that the program starts in a stable state (i.e., the preceding program has
not aborted), and term, indicating that the program starts at some finite time, (i.e., the

7 This is known in the Z and Object-Z literature as the blocking interpretation [16].

preceding program terminated). We introduce a new form of design, an extended design
(p `X r), that if p holds initially, guarantees to deliver a post-state satisfying r with re-
spect to the pre-state. The syntax of an extended design uses “`X” to distinguish it from
a design, which uses just “`”. The assumption p holding initially does not guarantee
termination, but r may explicitly refer to term′ to require termination. For example, for
a relation w that does not refer to term′,

– (p `X term′ ∧ w) requires that if p holds initially, the program should terminate
and satisfy w between its pre-state and post-state;

– (p `X term′ ⇒ w) requires that if both p holds initially and the program terminates,
then it also satisfies w;

– (p `X (q ⇒ term′ ∧ w) ∧ (¬ q ⇒ ¬ term′)), where q is a single-state predicate
on the pre-state, requires that if p holds initially, then both the following conditions
hold: if q holds initially, the program should terminate and satisfy w; and if q does
not hold initially, the program never terminates.

For (non)termination there are three possibilities for each initial state: termination is
required, nontermination is required, or either termination or nontermination is possible.

The semantics of the extended design (p `X r) as a relation is characterised by the
following predicate:

(ok ∧ term ∧ p⇒ ok′ ∧ r) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term) . (4)

It says that if the program starts in a stable state at some finite time (i.e., ok ∧ term) in
an initial state in which p holds, then the program will remain in a stable state (i.e., ok′)
and relation r will hold between the initial and final states. A nonterminating program
is ipso facto non-aborting and therefore stable (¬ term′ ⇒ ok′), and a program can
only terminate if its predecessor terminated (term′ ⇒ term). For an extended design,
the single-state predicate p should not refer to ok or term, and the relation r may refer to
term′ but not ok, ok′ or term.8 The relation r(v, v′, term′) is in terms of the initial values
of the program variables v, their final values v′, and the final termination observation
term′.

An extended design of the form

(true `X ¬ term′ ∧ x′ = 1) (5)

is not sensible because it constrains the final value of x to be one, even though it is
guaranteed to never terminate. Because one can never observe the final values of the
program variables in the case of nontermination, for an extended design to be well
formed, we require that r is such that it does not constrain the final values of the program
variables in the case of nontermination, i.e.,

[p ∧ ¬ term′ ⇒ (r ⇔ (∀ v′ • r))] , (6)

where v′ is the set of final-state program variables. Note that the program variables
(v) do not include the observations ok and term. The example (5) does not satisfy this

8 Again, allowing p and r to refer to ok, ok′, and term doesn’t add anything because (p `X r) is
semantically equivalent to (p

[
true,true

ok,term

]
`X r

[
true,true,true

ok,term,ok′

]
).

requirement because the following does not hold for all values of term′ and x′ :

[¬ term′ ⇒ (¬ term′ ∧ x′ = 1⇔ (∀ x′ • ¬ term′ ∧ x′ = 1))]
≡ [¬ term′ ⇒ (x′ = 1⇔ false)]
≡ [¬ term′ ⇒ (x′ 6= 1)] .

An extended design (p0 `X r0) is refined by another extended design (p1 `X r1)
provided the semantic relation defined by the latter implies the semantic relation defined
by the former, that is,

[(ok ∧ term ∧ p1 ⇒ ok′ ∧ r1) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term)⇒
(ok ∧ term ∧ p0 ⇒ ok′ ∧ r0) ∧ (¬ term′ ⇒ ok′) ∧ (term′ ⇒ term)] ,

which holds if and only if

[p0 ⇒ (p1 ∧ (r1 ⇒ r0))] . (7)

This is similar to the condition for refining UTP designs (3), except that r0 and r1 may
refer to term′ to specify termination behaviour.

Relating designs and extended designs. To see that an extended design generalises
a design, we show that we can map any design into a unique extended design. For any
design, (p ` w), we have

DX(p ` w) =̂ (p `X term′ ∧ w) .

It is straightforward to show that this mapping preserves the refinement ordering, and
that the image of this mapping is a subtheory of extended designs [1, Chap. 4].

For extended designs, we have the following interesting extreme cases:

abortX =̂ (false `X true)
chaosX =̂ (true `X true)

terminatesX =̂ (true `X term′)
foreverX =̂ (true `X ¬ term′)
magicX =̂ (true `X false)

where abortX , terminatesX , and magicX correspond to their UTP design equivalents
(via the mapping DX). The other two commands do not have equivalent UTP designs:
chaosX does not abort but it may or may not terminate, and if it terminates then any final
state is possible; and foreverX does not abort but also never terminates. The extended
design chaosX is refined by both terminatesX and foreverX . Extended designs form a
complete lattice under the refinement ordering, with least element abortX and greatest
element magicX .

Total and partial correctness. To show that a program s is totally correct with re-
spect to the precondition p (interpreted as both an assumption on the initial states and a
termination set) and relation w, we must show

(p `X term′ ∧ w) v s

and to show partial correctness with respect to the same precondition (this time inter-
preted as just an assumption on the initial state) and relation, we must show

(p `X term′ ⇒ w) v s .

5 General correctness

Parnas [19, 20] introduced the notion of a limited domain (LD) relation to describe ter-
mination sets and pre-post relations (of a control structure that generalised Dijkstra’s
guarded command control structures [21]). Jacobs and Gries [22] introduced a similar
idea called general correctness, which has been further explored by Nelson [23] and
Dijkstra and Scholten [24]. Dunne has studied general correctness [25, 26] and incor-
porated general correctness into a UTP setting [27]. He makes use of a prescription of
the form (p
 w), which is guaranteed to terminate from initial states in which p holds,
and if it does terminate (whether or not it was guaranteed to do so) then relation w holds
on termination. Note that the syntax of a prescription uses a “
” in place of a “`” to
distinguish it. We can model the semantics of the prescription (p
 w) as a relation by
making use of the observation term, which represents termination9:

(term ∧ p⇒ term′) ∧ (term′ ⇒ w ∧ term) . (8)

The following examples illustrate the expressive versatility of prescriptions:

– (true
 w) guarantees termination from any state and that w holds;
– (p
 p ⇒ w) requires that in any initial state in which p holds, the program

terminates and satisfies w, and if p does not hold initially, there is no guarantee of
termination and no guarantee about the final state (although it never aborts — see
Section 6 for further explanation);

– (false
 w) corresponds to a partial correctness specification — although no guar-
antee of termination is given, if it does terminate, w holds; and

– (false
 false) guarantees to never terminate.

A prescription (p0
 w0) is refined by another prescription (p1
 w1) provided
the semantic relation defined by the latter implies (is included in) the semantic relation
defined by the former, that is,

[(term ∧ p1 ⇒ term′) ∧ (term′ ⇒ w1 ∧ term)⇒
(term ∧ p0 ⇒ term′) ∧ (term′ ⇒ w0 ∧ term)] ,

which holds if and only if [p0 ⇒ p1] ∧ [w1 ⇒ w0] .
9 We use the observation name “term” to be consistent with the terminology in the rest of this

paper, although the name “ok” is used by Dunne [27].

Relating prescriptions and extended designs. To see that an extended design gener-
alises a prescription, we show that we can map any prescription into a unique extended
design. For any prescription (p
 w) we have

PX(p
 w) =̂ (true `X (p⇒ term′) ∧ (term′ ⇒ w)) .

It is straightforward to show that this mapping preserves the refinement ordering, and
that the image of this mapping is a subtheory of extended designs.

For prescriptions we have the following interesting extreme cases:

chaosP =̂ (false
 true)
terminatesP =̂ (true
 true)

foreverP =̂ (false
 false)
magicP =̂ (true
 false)

where these all correspond to their extended design equivalents, but note that there is
no equivalent of abortX . Prescriptions form a complete lattice under the refinement
ordering, with least element chaosP and greatest element magicP. We expand on the
distinction between general correctness and extended designs in the next section.

6 Assumptions on the initial state versus termination sets

In both the UTP design, (p ` w), and the extended design, (p `X r), the predicate p
acts as an assumption the implementor can make about the initial state. If p doesn’t hold
initially then the implementation is free to do anything, even abort. The UTP design has
the requirement that the program must also terminate whenever p holds initially. Hence
for a UTP design, p is both an assumption on the initial state and a termination set. For
extended designs, p is only an assumption on the initial state. Modulo p, the termination
set is specified within r. This is because any behaviour is allowable if p does not hold
initially, so termination is only guaranteed from those initial states where both p holds
and r requires termination.

In the general correctness prescription (p
 w), the predicate p specifies the termi-
nation set. There is no way to specify an assumption on the initial state (in the above
sense) in general correctness, because general correctness has no notion of abortion.
One can get close with a prescription of the form (p
 q ⇒ w), where q is a single-
state predicate on the initial state. If q does not hold initially, then any non-aborting
behaviour is allowed. However, this has a subtle difference in behaviour when prescrip-
tions are sequentially composed. In all our models, sequential composition is defined as
the relational composition of the semantic relations of the two commands. For general
correctness we have that

(p
 true); (true
 x′ = 1) (9)

guarantees that, even if p does not hold initially, if the first prescription terminates, then
the whole terminates and the final value of x will be one. Hence, if the whole terminates,
then x is guaranteed to be one. If we replace the prescriptions in (9) with UTP designs

or extended designs of the same form, no such guarantee about the final value of x is
given if p does not hold initially. With the UTP design (p ` true), if p doesn’t hold
initially, then its semantic relation allows okay′ to be false, in which case okay may
be false for the second command (true ` x′ = 1) and hence it can do anything, and
no guarantee can be given about the final value of x. However, for the prescription
(p
 true), if p doesn’t hold initially, this prescription isn’t required to terminate, but if
it does terminate, (true
 x′ = 1) is then required to terminate and set x to one.

Note that for extended designs, we have the law

abortX; s = abortX ,

but the following law does not hold in general

chaosX; s = chaosX .

In summary, the implementor can rely on the assumption, p, on the initial state
holding. Nothing can be assumed about an implementation, I, when it is executed from
an initial state not satisfying p, and furthermore nothing can be assumed about the be-
haviour of any component executing after I if the execution of I happens to terminate.
In contrast (non)termination represents an allowed or required behaviour of any imple-
mentation. The reason these are often confused is that both assumptions on the initial
state and termination sets are defined in terms of a condition on the initial state.

7 Timed designs

To discuss timing issues one can introduce an observation representing the current time,
as done by Hehner [10, 28, 29] and Abadi and Lamport [30]. An extended design can
be generalised to a timed design by replacing the observations term and term′ by the
observations τ and τ ′, representing the initial and final times, respectively. The two most
interesting choices for representing time are the natural numbers and the non-negative
reals, in both cases augmented with the value∞ to represent nontermination. For our
discussion here either representation is valid. Hehner [10, 28] uses natural numbers to
represent abstract time, that is, they represent a notion of progress rather than real time.
The real-time refinement calculus [13] uses real numbers to represent real time.

A timed design, (q `T r), has a semantics given by the following relation:

(ok ∧ τ 6=∞ ∧ q⇒ ok′ ∧ r) ∧ (τ ′ =∞⇒ ok′) ∧ τ ≤ τ ′ . (10)

The form is similar to that for an extended design (4), except that we require that time
does not go backwards, i.e., τ ≤ τ ′. We allow q to refer to the before-values of the
program variables as well as τ and τ ′, and r can to refer to both the before- and after-
values of the program variables as well as τ and τ ′, but neither q nor r can refer to ok
or ok′. Because we allow it to refer to τ ′ the precondition q – which specifies the states
in which the program is guaranteed not to abort – is no longer a condition on the initial
state only, unlike the preconditions of each of our previous designs. To emphasise this
we have used the name q rather than p, which we reserve for predicates on a single state.

We allow q to refer to τ ′ so that we may express constraints regarding when the program
may abort. But note that q may not refer to v′ because, unlike τ ′, the final values v′ of
the program variables cannot be constrained in the event of the program aborting.

The inclusion of a time variable makes it possible to express, not just if the program
terminates, but when it terminates. Such execution time constraints may be included
in r, e.g., τ ′ − τ ≤ 1 requires execution to take at most one time unit. Execution
time constraints may be used to define a deadline command [31], that requires that
the time is at most D when the deadline command is reached, as the timed design
(true `T τ = τ ′ ≤ D ∧ id), where id is the identity relation on program variables. The
deadline command is a specification construct; it cannot be directly implemented.

As already mentioned, as well as being used to specify termination time constraints,
time may also be used to specify when the program may abort. Program abortion time
constraints can be included in q. If q is taken to be false, as in the extreme program

abortT =̂ (false `T true) ,

we have that the program may become unstable immediately at the initial time τ . Since
q is able to reference the final time, τ ′, it is also possible to specify that a program may
abort at least t time units after the start time τ . For example, design

(τ ′ − τ < 10 `T r)

may either terminate within 10 time units satisfying r, or it may do anything as long as
the τ ′ is greater than or equal to τ + 10. A special case of this is the timed design

(τ ′ − τ < 10 `T false)

which guarantees to run for 10 time units, after which it may become unstable. It can-
not terminate within 10 time units because in doing so it would incur the impossible
obligation of satisfying false. This program may also be expressed as the sequential
composition

(true `T τ
′ − τ ≥ 10); abortT

but note that this sequential composition could not be expressed as a single timed design
if we did not allow the precondition to refer to τ ′.

We consider a timed design such as (τ ′ − τ > t `T r) for some non-negative time t
not to be reasonable since it would put an upper bound on the time at which the program
may abort. Since we would like to specify that a program that may abort at time t may
be implemented by one which aborts at some later time (that is, a program that delays
the occurrence of a catastrophic event), we impose a condition on the assumption q of
a timed design (q `T r) that ¬ q must not impose an upper bound on τ ′, i.e.,[

¬ q⇒
(
∀ τ ′′ • τ ′ < τ ′′ ⇒ ¬ q

[
τ ′′

τ ′

])]
. (11)

We also need a timed-design version of condition (6) ensuring that the final values of
the program variables are not constrained under nontermination:

[τ 6=∞ ∧ q ∧ τ ′ =∞⇒ (r ⇔ (∀ v′ • r))] . (12)

Refinement of timed designs,

(q0 `T r0) v (q1 `T r1) ,

is defined in terms of reverse implication of the equivalent semantic relations, and hence
holds provided

[τ 6=∞ ∧ τ ≤ τ ′ ∧ q0 ⇒ ((τ ′ 6=∞⇒ q1) ∧ ((q1 ⇒ r1)⇒ r0))] . (13)

This condition is similar to that for UTP designs (3) and extended designs (7), except
that it adds the implicit precondition that the start time is finite, and the healthiness
condition that no command can allow time to go backwards. The consequent is also
expressed differently because q1 may refer to the finish time τ ′. In the common special
case that q1 is independent of τ ′, the consequent simplifies to (q1 ∧ (r1 ⇒ r0)). In the
more general case, satisfaction of the antecedent τ 6= ∞ ∧ τ ≤ τ ′ ∧ q0 need only
imply that q1 holds when τ ′ is finite, since programs may not abort at time infinity,
however it must always guarantee that ((q1 ⇒ r1)⇒ r0) .

7.1 Relating extended designs and timed designs

Timed designs are richer than extended designs and hence we can simulate an extended
design (p `X r) by the timed design in which within r the observation term′, represent-
ing termination, is replaced by the observation that the final time is finite, i.e., τ ′ 6=∞.
Hence we can map any extended design into a unique timed design. For any extended
design (p `X r) we have

XT(p `X r) =̂ (p `T r
[

τ ′ 6=∞
term′

]
) .

It is straightforward to show that XT preserves the refinement ordering, and that the
image of this mapping is a subtheory of timed designs.

One can define extreme cases in a similar fashion to those for extended designs,
except that terminatesT and foreverT make use of τ ′ rather than term′. We only give
the definition of these two:

terminatesT =̂ (true `T τ
′ 6=∞)

foreverT =̂ (true `T τ
′ =∞) .

Timed designs form a complete lattice under the refinement ordering, with least element
abortT and greatest element magicT .

8 Timed reactive designs

To model the interactions of a real-time program with its environment, one can use a
trace of the values of the program variables over time, i.e., a mapping, σ, from times
to the values of the program variables at those times. As with timed designs, time can
either be natural numbers or real numbers, in both cases extended with infinity. The

domain of a trace, dom(σ), never includes the time∞. A program relation then relates
an initial trace, σ, to an extension of that trace σ′. For a timed reactive design, (q `R r),
both q and r are relations between the initial trace, σ, of the values of the program
variables up to the start time of the command, and the final trace σ′. The start time τ
is then an abbreviation for sup(dom(σ)) and the final time τ ′ is an abbreviation for
sup(dom(σ′)), where sup stands for supremum, i.e., least upper bound. For a nonter-
minating computation, the domain of the final trace σ′ has no finite bound, and hence
sup(dom(σ′)) = ∞. A timed reactive design (q `R r) has a semantics given by the
following relation:

(ok ∧ τ 6=∞ ∧ q⇒ ok′ ∧ r) ∧ (τ ′ =∞⇒ ok′) ∧ σ ⊆ σ′ . (14)

The significant change from the timed design semantics (10) is that τ ≤ τ ′ is re-
placed by the stronger requirement that σ is a prefix of σ′, i.e., σ ⊆ σ′, which implies
sup(dom(σ)) ≤ sup(dom(σ′)), i.e., τ ≤ τ ′. The initial state of a timed reactive design
corresponds to σ(τ) and the final state (if there is one) to σ′(τ ′). Note that if τ ′ = ∞,
dom(σ′) is the complete range of all finite times, but does not include infinity. Hence
we don’t need a version of condition (12) in this case.

Another change from the timed design semantics is that precondition q – which
specifies the conditions under which the program is guaranteed to not abort – may
refer to the final trace σ′. To illustrate, consider the following timed reactive design
interpreted using abstract time (i.e., the domain of σ is natural numbers):

(σ′ 6= σ a 〈x〉 `R false) .

This may become unstable immediately after it has set the program state to the value x
at time τ + 1 .

For the reactive timed design (q `R r) we impose a condition on q that is analogous
to (11) for timed designs:[

¬ q⇒
(
∀σ′′ • σ′ ⊂ σ′′ ⇒ ¬ q

[
σ′′

σ′

])]
. (15)

It requires that a reactive design that may abort after behaving like trace σ′, i.e., if q
is false for σ′, may be implemented by one that aborts at some later time, i.e., q with
σ′ replaced by σ′′ is false for all traces σ′′ that are extensions of σ′. Note that with
τ ′ = sup(dom(σ′)) and τ ′′ = sup(dom(σ′′)), (15) implies (11). The reactive design

(¬ (∃σ′′ • x 6∈ ran(σ′′) ∧ σ′ = σ a σ′′) `R false) ,

for instance, does not satisfy (15), since it may abort at time τ , but it may not delay the
abortion time to time τ + 1 and extend the final trace with a state that takes the value x.

Refinement of timed reactive designs,

(q0 `R r0) v (q1 `R r1) ,

is defined in terms of reverse implication of the equivalent semantic relations, and hence
holds provided

[τ 6=∞ ∧ σ ⊆ σ′ ∧ q0 ⇒ ((τ 6=∞⇒ q1) ∧ ((q1 ⇒ r1)⇒ r0))] .

This condition is similar to that for timed designs (13), except that the predicates now
refer to the initial and final traces, σ and σ′, and the healthiness constraint τ ≤ τ ′ is
strengthened to ensure that the initial trace is a prefix of the final trace, i.e., σ ⊆ σ′.

For abstract time (natural numbers) the timed reactive model corresponds closely
to models based on sequences of states as used in, for example, action systems [32]
and TLA [33], while for real-time (real numbers) a timed reactive design corresponds
closely to a real-time specification as used in the real-time refinement calculus [34, 35,
15, 13]. Hoare and He [1, Chap. 8] introduce reactive processes, which consider traces
of events, tr. Their processes satisfy the property that a process only ever extends a
trace, i.e., tr ≤ tr′, similar to our constraint on traces of states.

Relating timed designs and timed reactive designs. Timed reactive designs gener-
alise timed designs. Each timed design (q `T t) can be mapped to a unique timed
reactive design.

TR(q `T t) =̂



∃ τ, τ ′, v • q ∧

τ = sup(dom(σ)) ∧
τ ′ = sup(dom(σ′)) ∧
v = σ(τ)

 `R


∃ τ, τ ′, v, v′ • t ∧

τ = sup(dom(σ)) ∧
τ ′ = sup(dom(σ′)) ∧
v = σ(τ) ∧
(τ ′ 6=∞⇒

v′ = σ′(τ ′))




This mapping preserves the refinement ordering, and the image of this mapping is a
subtheory of timed reactive designs.

One can define extreme cases in a similar fashion to those for extended designs and
timed designs, except that terminatesR and foreverR make use of σ′ rather than term′

or τ ′. We only give the definition of these two:

terminatesR =̂ (true `R sup(dom(σ′) 6=∞)
foreverR =̂ (true `R sup(dom(σ′) =∞) .

Timed reactive designs form a complete lattice under the refinement ordering, with least
element abortR and greatest element magicR .

9 Conclusions

The purpose of this paper has been to help formalise the relationships between a number
of different relational models of programs. These relationships are summarised graph-
ically in Figure 1. We introduced extended designs to allow nontermination and abort
to be distinguished. This allows both partial and total correctness concerns to be mod-
elled, as well as allowing requirements like “a program must not terminate from certain
initial states” to be specified. Z specifications [8, 9], UTP designs [1], VDM pre-post
specifications [2], refinement calculus specifications [3, 4], B specifications [7], and
general-correctness prescriptions [27] can be seen as special cases of extended designs.
Extended designs allow the distinction between an assumption on the initial state and a
termination set to be made.

One interesting consequence of formalising the relationships between these models
is that it has highlighted the fact that these different approaches to specification use the
word “precondition” to mean different things: it can mean an assumption, a termination
set, an enabling condition (or guard or test), or combinations of these (as described in
Section 1). By embedding all these approaches in the more general extended design
model, we can separate out these concepts and hence determine which of them applies
in each case. We hope that this better understanding of the relationships between the
models and the different interpretations of the meaning of “precondition” will lead to
less confusion when comparing or switching between these different models.

Extended designs can be seen as an abstraction of timed designs. In a timed design
one can place specific requirements on the final time τ ′, whereas in an extended design
one can only refer to termination (term′), which effectively abstracts all finite restric-
tions of τ ′ in a timed design simply to τ ′ 6= ∞. Timed designs making use of abstract
time are closely related to Hehner’s timed models [10, 28, 29].

Timed reactive designs provide a richer model than timed designs, in which initial
and final states are replaced by initial and final traces, σ and σ′, where σ is a prefix of
σ′. With abstract time this model corresponds to those used for action systems [32] and
TLA [33], and with real time to the real-time refinement calculus [13, 15].

In developing the real-time refinement calculus, it was observed that one needed
to distinguish abort and nontermination, unlike in existing pre-post specifications in
UTP designs, VDM, the refinement calculus, and B. It was in order to reconcile these
models that the extended-design model was invented. It generalises the existing pre-post
specification models, while simultaneously being a specialisation of both the timed and
timed reactive models.

The relationship between the various models is given by the mappings between
models. Each downward link in Figure 1 corresponds to a mapping from a sparser
model to a richer one. In addition, one can compose these mappings to create a mapping
from a model to any richer one that can be reached by following downward links. For
example, one can compose the mapping DX from UTP designs to extended designs
with the mapping XT from extended designs to timed designs to get a mapping XT ◦DX
from designs to timed designs.

Because the mappings between models embed one model as a subtheory of another,
this allows properties proved in the richer model, that apply to the elements of the
subtheory, to be used in the simpler model. Investigation of these uses of the mappings
and extending the mappings to program constructs other than designs are avenues for
future research.

Acknowledgements. This research was supported, in part, by the EPSRC-funded Trust-
worthy Ambient Systems (TrAmS) Platform Project and Australian Research Council
(ARC) Discovery Grants DP0987452 and DP0879529. We would like to thank Brijesh
Dongol for feedback on earlier drafts of this paper.

References

1. Hoare, C.A.R., He Jifeng: Unifying Theories of Programming. Prentice Hall (1998)

2. Jones, C.B.: Systematic Software Development using VDM. Prentice-Hall (1986)
3. Back, R.J.R.: On correct refinement of programs. Journal of Computer and System Sciences

23(1) (February 1981) 49–68
4. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer (1998)
5. Morgan, C.C.: The specification statement. ACM Trans. on Prog. Lang. and Sys. 10(3) (July

1988)
6. Morgan, C.C.: Programming from Specifications. second edn. Prentice Hall (1994)
7. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press

(1996)
8. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, London (1989)
9. Hayes, I.J., ed.: Specification Case Studies. second edn. Prentice Hall (1993)

10. Hehner, E.C.R.: Termination is timing. In van de Snepscheut, J., ed.: Mathematics of Pro-
gram Construction. Volume 375 of Lecture Notes in Computer Science., Springer (June
1989) 36–47

11. Utting, M., Fidge, C.J.: A real-time refinement calculus that changes only time. In He
Jifeng, ed.: Proc. 7th BCS/FACS Refinement Workshop. Electronic Workshops in Comput-
ing, Springer (July 1996)

12. Hayes, I.J., Utting, M.: Coercing real-time refinement: A transmitter. In Duke, D.J., Evans,
A.S., eds.: BCS-FACS Northern Formal Methods Workshop (NFMW’96). Electronic Work-
shops in Computing, Springer (1997)

13. Hayes, I.J., Utting, M.: A sequential real-time refinement calculus. Acta Informatica 37(6)
(2001) 385–448

14. Hayes, I.J.: A predicative semantics for real-time refinement. In McIver, A., Morgan, C.C.,
eds.: Programming Methodology. Springer Verlag (2003) 109–133

15. Hayes, I.J.: Reasoning about real-time repetitions: Terminating and nonterminating. Science
of Computer Programming 43(2–3) (2002) 161–192

16. Derrick, J., Boiten, E.: Refinement in Z and Object-Z. Springer (2001)
17. Duke, R., Rose, G., Smith, G.: Object-Z: A specification language advocated for the descrip-

tion of standards. Computer Standards and Interfaces 17 (1995)
18. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers (2000)
19. Parnas, D.L.: A generalized control structure and its formal definition. Commun. ACM 26(8)

(1983) 572–581
20. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput. Program.

25(1) (1995) 41–61
21. Dijkstra, E.W.: Guarded commands, nondeterminacy, and a formal derivation of programs.

CACM 18 (1975) 453–458
22. Jacobs, D., Gries, D.: General correctness: a unification of partial and total correctness. Acta

Informatica 22 (1985) 67–83
23. Nelson, G.: A generalisation of Dijkstra’s calculus. ACM Trans. on Prog. Lang. and Sys.

11(4) (1989)
24. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer-Verlag

(1990)
25. Dunne, S.E., Stoddart, W.J., Galloway, A.J.: Specification and refinement in general cor-

rectness. In Evans, A., Duke, D., Clark, A., eds.: Proceedings of the 3rd Northern Formal
Methods Workshop, BCS Electronic Workshops in Computing (1998)

26. Dunne, S.E.: Abstract commands: a uniform notation for specifications and implementations.
In Fidge, C., ed.: Computing: The Australasian Theory Symposium (CATS 2001). Volume 42
of Electronic Notes in Theoretical Computer Science., Elsevier Science BV (2001) 104–123

27. Dunne, S.E.: Recasting Hoare and He’s unifying theory of programs in the context of general
correctness. In Butterfield, A., Strong, G., Pahl, C., eds.: Proceedings of the 5th Irish Work-
shop in Formal Methods, IWFM 2001. Workshops in Computing, British Computer Society
(2001)

28. Hehner, E.C.R.: Abstractions of time. In Roscoe, A., ed.: A Classical Mind. Prentice Hall
(1994) 191–210

29. Hehner, E.C.R.: Retrospective and prospective for unifying theories of programming. In
Dunne, S., Stoddart, B., eds.: UTP. Volume 4010 of Lecture Notes in Computer Science.,
Springer (2006) 1–17

30. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Trans. on Prog. Lang.
and Sys. 16(5) (September 1994) 1543–1571

31. Fidge, C.J., Hayes, I.J., Watson, G.: The deadline command. IEE Proceedings—Software
146(2) (April 1999) 104–111

32. Back, R.J., von Wright, J.: Trace refinement of action systems. In Jonsson, B., Parrow, J.,
eds.: Proc. of CONCUR’94: Concurrency Theory. Volume 836 of LNCS., Springer-Verlag
(1994) 367–384

33. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison Wesley (2003)

34. Hayes, I.J.: Procedures and parameters in the real-time program refinement calculus. Science
of Computer Programming 64(3) (February 2007) 286–311

35. Hayes, I.J.: Termination of real-time programs: definitely, definitely not or maybe. In Dunne,
S.E., Stoddart, W.J., eds.: UTP 2006: First Int. Symp. on Unifying Theories of Programming.
Volume 4010 of LNCS., Springer Verlag (2006) 141–154

