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1 Reaction Network Models (Model 1 - Model 3)

Model 1 as rea-file format.
For the modified “short timescale” version (Model1b) we remove two reactions: “KinU -> KinA” and “O-
Mad2 ->”. The modified version represents a short timescale at which no kinetochore gets attached and
O-Mad2 does not decay.

# Number of Components
14
# Components
KinA
KinU
Apc
Mcc
Apc.Mcc
BubR1.Bub3
Cdc20
Apc.Cdc20
Cdc20.Mad2
C-Mad2
O-Mad2
Cdc20.BubR1.Bub3
Apc.Cdc20.C-Mad2
Apc.Cdc20.BubR1.Bub3
# Number of Reactions
21
# Reactions
1.0 KinU -> 1.0 KinA
1.0 Apc 1.0 Mcc -> 1.0 Apc.Mcc
1.0 Apc.Mcc -> 1.0 Apc 1.0 Mcc
1.0 Apc 1.0 Cdc20 -> 1.0 Apc.Cdc20
1.0 KinU 1.0 O-Mad2 -> 1.0 KinU 1.0 C-Mad2
1.0 Cdc20.Mad2 1.0 BubR1.Bub3 -> 1.0 Mcc
1.0 Mcc -> 1.0 Cdc20.Mad2 1.0 BubR1.Bub3
1.0 Cdc20 1.0 C-Mad2 -> 1.0 Cdc20.Mad2
1.0 C-Mad2 -> 1.0 O-Mad2
1.0 Cdc20.Mad2 -> 1.0 Cdc20 1.0 O-Mad2
1.0 Apc.Cdc20 1.0 Mcc -> 1.0 Apc 1.0 Cdc20 1.0 Mcc
1.0 Cdc20 1.0 BubR1.Bub3 -> 1.0 Cdc20.BubR1.Bub3
1.0 Cdc20.BubR1.Bub3 -> 1.0 Cdc20 1.0 BubR1.Bub3
1.0 Apc.Cdc20 1.0 C-Mad2 -> 1.0 Apc.Cdc20.C-Mad2
1.0 Apc.Cdc20.C-Mad2 -> 1.0 Apc.Cdc20 1.0 C-Mad2
1.0 Apc.Cdc20.C-Mad2 1.0 BubR1.Bub3 -> 1.0 Apc.Mcc
1.0 Apc.Mcc -> 1.0 Apc.Cdc20.C-Mad2 1.0 BubR1.Bub3
1.0 Apc.Mcc 1.0 KinA ->1.0 Apc.Cdc20.BubR1.Bub3 1.0 O-Mad2 1.0 KinA
1.0 Apc.Cdc20.BubR1.Bub3 -> 1.0 Apc.Cdc20 1.0 BubR1.Bub3
1.0 O-Mad2 ->
1.0 Mcc 1.0 KinA -> 1.0 Cdc20.BubR1.Bub3 1.0 O-Mad2 1.0 KinA
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Model 2 as rea-file format.
For the modified “short timescale” version (Model2b) we remove reaction: “KinU -> KinA”.

# Number of Components
7
# Components
Kin A
Kin U
Activator
Promotor
Promotor Activated
Inhibitor
Promotor Inactive
# Number of Reactions
9
# Reactions
1.0 Kin U -> 1.0 Kin A
1.0 Inhibitor -> 1.0 Activator
1.0 Activator 1.0 Kin U -> 1.0 Inhibitor 1.0 Kin U
1.0 Promotor Inactive 1.0 Kin A -> 1.0 Promotor Activated 1.0 Kin A
1.0 Promotor 1.0 Activator -> 1.0 Promotor Activated
1.0 Promotor Activated 1.0 Inhibitor -> 1.0 Promotor 1.0 Activator 1.0 Inhibitor
1.0 Promotor 1.0 Inhibitor -> 1.0 Promotor Inactive
1.0 Promotor Inactive -> 1.0 Promotor 1.0 Inhibitor
1.0 Promotor Activated -> 1.0 Promotor 1.0 Activator

Model 3 as rea-file format.
For the modified “short timescale” version (Model3b) we remove reaction: “KinU -> KinA”.

# Number of Components
4
# Components
Activator
Inhibitor
Kin A
Kin U
# Number of Reactions
3
# Reactions
1.0 Kin U -> 1.0 Kin A
1.0 Activator 1.0 Kin U -> 1.0 Inhibitor 1.0 Kin U
1.0 Inhibitor -> 1.0 Activator
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2 Supplementary Figure S1: State Transition Graph of a CTMC Model 3b)
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Figure 1. State transition graph of the CTMC model for Model3b generated by PRISM. State labels show index and
population count, e.g., 24 (0,1,0,3) denotes that there are 0 KinU, 1 KinA, 0 A and 3 I in state 24. Arrows denote the
transitions between states, numbers over the arrows denote the rate of the transition.
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3 Method: Approximate Aggregation Method for Model Reduction

In this section we recall a method24 for finding approximate aggregations of an ODE system ẋ = A(x) where A : Rn→ Rn

is a quadratic polynomial. This case is important as any set of interesting biochemical reaction will usually incorporate
rules for producing one type of particles by combining two different types of reactants. This kind of dynamics translates
to A being a polynomial map of degree two. Oddly enough, reactions involving terms of order 3 and higher are rarely
encountered as they can, at least conceptually, be simulated as successive reactions of order two.

Firstly, recall that finding aggregations of the system ẋ = A(x) is equivalent to finding aggregations of the map
x 7→ A(x)43. It can be checked that any quadratic polynomial A : Rn→ Rn can be written as

A(x) = A(0)+DA(0)x+ 1
2 (DA(x)−DA(0))x

where DA denotes the differential of A. Note that the second order term in the equation above is indeed linear as the other
power of x is hidden within the differential. It is possible to write our function in this convenient form only because we
assumed that A(x) is a quadratic polynomial and this sort of argument does not straightforwardly generalize to polynomials
of higher degrees. Since entries of DA are affine maps we can further write

DA(x) = DA(0)+
n

∑
i=1

xi(DA(ei)−DA(0))

where ei for 1≤ i≤ n are unit vectors of the canonical basis in Rn and x is a vector with entries x = (x1, . . . ,xn). Thus,

A(x) = A(0)+DA(0)x+ 1
2

n

∑
i=1

xi(DA(ei)−DA(0))x

and we see that vector A(x) can be written as a linear combination of vectors A(0), DA(0)x, DA(e1)x, . . . , DA(en)x. We
will now show that any aggregation which is simultaneously compatible with matrices DA(0), DA(e1), . . . , DA(en) must
also be compatible with A. To see this, let us denote by Ξ the coarse graining matrix associated to a particular aggregation
which is simultaneously compatible with matrices DA(0), DA(e1), . . . , DA(en). This means that we can find matrices
D̂A(0), D̂A(e1), . . . , D̂A(en) for which the following equations hold:

ΞDA(0) = D̂A(0)Ξ, ΞDA(e1) = D̂A(e1)Ξ, . . . , ΞDA(en) = D̂A(en)Ξ.

Then applying Ξ to A(x) we get:

ΞA(x) = ΞA(0)+ΞDA(0)x+ 1
2

n

∑
i=1

xi(ΞDA(ei)−ΞDA(0))x

= ΞA(0)++D̂A(0)Ξx+ 1
2

n

∑
i=1

xi(D̂A(ei)− D̂A(0))Ξx

where the last expression is clearly a function of Ξx which further means that Ξ is compatible with map A(x).
The converse to this fact is also known to be true45. Together, this allows us to reduce our problem of finding

aggregations for A to that of finding aggregations simultaneously compatible with each of the matrices DA(0), DA(e1), . . . ,
DA(en).

In fact, rather than looking for aggregations compatible simultaneously with DA(0), DA(e1), . . . , DA(en) which may

not even exist, it seems more reasonable to look for a set of matrices D̃A(0), D̃A(e1), . . . , D̃A(en) which approximate them
in some matrix norm while at the same time being simultaneously compatible with a (preferably large) set of aggregations
S. The first step in doing so would be to do this for just one n-by-n matrix M.

Recall that an m-by-n (m≤ n) 0-1 matrix Ξ with exactly one entry equal to 1 in each column is called an aggregation
matrix and these are in 1-1 correspondence with the partitions of the set {1,2, . . . ,n}. For each such Ξ let VΞ be the set of
all n-by-n matrices coarse grained by Ξ. One can show that this set is a linear subspace of the set of all matrices of order n
which we denote by Mn(R)24. Thus, after fixing some matrix norm, one can orthogonally project matrix M onto VΞ in
order to obtain the best approximation M̃ which is coarse grained by Ξ.

But this only ensures that M̃ is coarse grained by Ξ, whereas one would like to get as many coarse-grainings as possible.
Note however that if Ξ1 and Ξ2 are two aggregation matrices, then VΞ1 ∩VΞ2 is again a linear subspace of Mn(R) consisting
precisely of matrices which are coarse grained by both Ξ1 and Ξ2. Projecting orthogonally onto this subspace will yield an
approximation of M which has at least those two valid reductions.

This idea extends to an arbitrary number of aggregation matrices, and one is inclined to ask how large a subset of
aggregation matrices {Ξ1, . . . ,Ξr} ⊆ {Ξp | p is a partition of {1,2, . . . ,n}} can be while ensuring that the distance from A
to its orthogonal projection onto VΞ1 ∩·· ·∩VΞr is kept within a given error threshold. Note that the number of partitions of
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a set {1, . . . ,n} is already super-exponential in n, and going through all subsets of those would yield a growth rate greater
than doubly exponential, thus making any brute force approach ineffective.

Instead, in Algorithm 1 below we propose running through all aggregations and retaining in a set S only those for which
induced projections produce an approximation matrix within the error threshold ε . The final approximation is then obtained
by projecting onto

⋂
p∈S VΞp . The reasoning behind this is that a matrix M that is ε-close to a subspace V ∩W cannot be

further than ε from either V or W . This however is not a guarantee that the converse, which is needed here, is true.

Algorithm 1 Finding a nearby matrix that can be coarse grained

Input: (n-by-n matrix) M
(error threshold) ε > 0

S = {}
for partition p of {1,2, . . . ,n} do

M′ = projection of M onto VΞp

if ‖M−M′‖< ε then
add p to S

end if
end for
V =

⋂
p∈S VΞp

M̃ = projection of M onto V
Output: (the approximate matrix) M̃

(the set of aggregations) S

It is not hard to modify Algorithm 1 so that it works with a set of matrices. We give the modification below as Algorithm
2. Again, there is no guarantee that the resulting matrices are ε close to the initial ones, but the same argument as before
justifies this approach.

Algorithm 2 Finding approximate matrices that can be jointly coarse grained

Input: (n-by-n matrices) M1, . . . ,Mk
(error threshold) ε > 0

S = {}
for partition p of {1,2, . . . ,n} do

M′i = projection of Mi onto VΞp

if ‖Mi−M′i‖< ε , for all 1≤ i≤ k then
add p to S

end if
end for
V =

⋂
p∈S VΞp

M̃i = projection of Mi onto V
Output: (the approximate matrices) M̃1, . . . ,M̃k

(the set of aggregations) S

Going back to our original problem, assume that we used this algorithm to obtain matrices D̃A(0), D̃A(e1), . . . , D̃A(en)

and the set of aggregations S that simultaneously coarse grains each of them. Then the approximate quadratic map Ã(x) is
simply given by

Ã(x) = A(0)+ D̃A(0)x+ 1
2

n

∑
i=1

xi(D̃A(ei)− D̃A(0))x

and the ODE system ẋ = Ã(x) can be aggregated using any of the coarse grainings from the set S.

3.1 Relation of this method to other model reduction techniques
The problem that standard model reduction techniques are attempting to solve usually consists of finding the evolution
of a quantity of interest whose dynamics is modeled by a high-dimensional ODE system. The goal is then to find
a low-dimensional model in which the evolution of the said quantity will match its actual evolution as accurately as
possible.46, 47

In our approach we focus our attention to the high dimensional model itself and from there we attempt to derive
quantities whose evolution can be exactly computed using reduced models. The guiding idea here being that it should
be possible to automatically derive certain “conservation laws” that govern the dynamics of our system. The goal of our
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approach is learning a hierarchical structure of the system under consideration and seeing how its organizational structure
fits together. The model reduction part then comes as a by-product of this process.

Consequently, the approximate aggregation method discussed above favors models with rich structure, models with
abundance of coarse grainings. This is perhaps best seen on an extremely simple example. The following two-dimensional
linear ODE model is a modification of an example by Rowe et al.44(

ẋ
ẏ

)
=

(
.01 .99
.98 .02

)(
x
y

)
It can be calculated that both singular values of this matrix are of magnitude close to 1. The classical model reduction
techniques based on SVD decomposition would therefore fail to reduce this model since both singular values are non-
negligible and cutting off the smaller one would lead to a vastly different model.(

ẋ
ẏ

)
=

(
.472 .659
.342 .477

)(
x
y

)
Our method on the contrary produces a system close to the original(

ẋ
ẏ

)
=

(
.015 .985
.985 .015

)(
x
y

)
but in which variables x and y can be aggregated together to give a reduced model

ż = z

where z = x+ y.
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