PLOS Medicine

Behavioural intervention for weight loss maintenance vs. standard weight advice in adults with obesity: a randomised controlled trial in the UK (NULevel Trial)

---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>PMEDICINE-D-18-01834R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Behavioural intervention for weight loss maintenance vs. standard weight advice in adults with obesity: a randomised controlled trial in the UK (NULevel Trial)</td>
</tr>
<tr>
<td>Short Title:</td>
<td>NULevel weight loss maintenance trial</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Research Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Behaviour; randomized controlled trial; Obesity; overweight; weight loss; weight loss maintenance</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Falko F Sniehotta, PhD
 | Newcastle University
 | Newcastle upon Tyne, UNITED KINGDOM |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | Newcastle University |
| Corresponding Author's Secondary Institution: | |
| First Author: | Falko F Sniehotta, PhD |
| First Author Secondary Information: | |
| Order of Authors: | Falko F Sniehotta, PhD
 | Elizabeth H Evans
 | Kirby Sainsbury
 | Ashley Adamson
 | Alan Batterham
 | Frauke Becker
 | Heather Brown
 | Stephan U Dombrowski
 | Daniel Jackson
 | Denise Howel
 | Karim Ladha
 | Elaine McColl
 | Patrick Olivier
 | Alex Rothman
 | Alison Steel
 | Luke Vale
 | Rute Vieira
 | Martin White
 | Peter C Wright
 | Vera Araujo-Soares |
| Order of Authors Secondary Information: | |
Abstract:

Background
Scalable weight loss maintenance interventions for adults with obesity are lacking but vital for the health and economic benefits of weight loss to be fully realised. We examined the effectiveness and cost-effectiveness of a low-intensity technology-mediated behavioural intervention to support weight loss maintenance in adults with obesity after clinically-significant weight loss (≥5%), compared to standard lifestyle advice.

Methods and Findings
The NUlevel trial was an open-label randomised controlled superiority trial in 288 adults recruited April 2014 to May 2015 with weight loss of ≥5% within the previous 12 months, from a pre-weight loss BMI of ≥30kg/m2. Participants were self-selected and the majority self-certified previous weight loss. We used a web-based randomisation system to assign participants to either standard lifestyle advice via newsletter (control arm) or a technology-mediated low intensity behavioural weight loss maintenance programme (intervention arm). The intervention comprised a single face-to-face goal-setting meeting, self-monitoring and remote feedback on weight, diet and physical activity via links embedded in short message service (SMS). All participants were provided with wirelessly-connected weighing scales but only participants in the intervention arm were instructed to weigh themselves daily and that they would receive feedback on their weight. After 12 months we measured the primary outcome, weight (kg) and also frequency of self-weighing, objective physical activity (via accelerometry), psychological variables and cost-effectiveness. The study was powered to detect a between-group weight difference of ±2.5kg at follow up. Overall, 264 participants (92%) completed the trial. Mean weight gain from baseline to 12 months was 1.8kg (95% CI 0.5 to 3.1) in the intervention group (n=131) and 1.8kg (95% CI 0.6 to 3.0) in the control group (n=133). There was no evidence of an effect on weight at 12 months (difference in adjusted mean weight change from baseline: -0.07; 95% CI -1.7 to -1.9, p = 0.9). Intervention participants weighed themselves more frequently than control participants and were more physically active. Intervention participants reported greater satisfaction with weight outcomes, more planning for dietary and physical activity goals and for managing lapses, greater confidence for healthy eating, weight loss and weight loss maintenance.

Conclusions
There was no difference in the weight loss maintenance of participants who received the NUlevel intervention compared to participants who received standard lifestyle advice via newsletter. The intervention affected some, but not all, process-related secondary outcomes of the trial.

Trial registration
This trial is registered with the ISRCTN registry (ISRCTN14657176; registration date 20 March 2014).

Suggested Reviewers:

| Jamie Hartmann-Boyce, PhD |
| University of Oxford |
| jamie.hartmann-boyce@phc.ox.ac.uk |
| Trialist with expertise in weight loss maintenance trials |

| Sharon Simpson, PhD |
| University of Glasgow |
| Sharon.Simpson@glasgow.ac.uk |
| PI of the WILMA weight loss maintenance trial |

Opposed Reviewers:

Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Disclosure</td>
<td>The study is funded by the UK National Prevention Research Initiative (NPRI) Phase 4 (grant MR/J000477/1). The NPRI includes the following Funding Partners (in alphabetical order): Alzheimer’s Research Trust, Alzheimer’s Society, Biotechnology and Biological Sciences Research Council, British Heart Foundation, Cancer Research UK, Chief Scientist Office, Scottish Government Health Directorate, Department of</td>
</tr>
</tbody>
</table>
the submission guidelines for detailed requirements. View published research articles from PLOS Medicine for specific examples.

This statement is required for submission and will appear in the published article if the submission is accepted. Please make sure it is accurate.

Unfunded studies
Enter: The author(s) received no specific funding for this work.

Funded studies
Enter a statement with the following details:
- Initials of the authors who received each award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
 - **NO** - Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
 - **YES** - Specify the role(s) played.

* typeset

Competing Interests

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any competing interests that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement will appear in the published article if the submission is accepted. Please make sure it is accurate. View published research articles from PLOS Medicine for specific examples.

Health, Diabetes UK, Economic and Social Research Council, Health and Social Care Research and Development Division of the Public Health Agency (HSC & R&D Division), Medical Research Council, The Stroke Association, Wellcome Trust, Welsh Assembly Government and World Cancer Research Fund. FFS is funded by Fuse, the Centre for Translational Research in Public Health, a UKCRC Public Health Research Centre of Excellence based on funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration. AA is funded by the National Institute of Health Research as an NIHR Research Professor.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

AB is statistical advisor to Cambwick Healthcare for a planned proof-of-concept medical device study.

All other authors have declared no competing interests exist.
NO authors have competing interests
Enter: The authors have declared that no competing interests exist.

Authors with competing interests
Enter competing interest details beginning with this statement:

I have read the journal's policy and the authors of this manuscript have the following competing interests: [insert competing interests here]

* typeset

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the PLOS Data Policy and FAQ for detailed information.

A Data Availability Statement describing where the data can be found is required at submission. Your answers to this question constitute the Data Availability Statement and will be published in the article, if accepted.

Important: Stating ‘data available on request from the author’ is not sufficient. If your data are only available upon request, select ‘No’ for the first question and explain your exceptional situation in the text box.

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

Yes - all data are fully available without restriction
Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of XXX with the appropriate details.

- If the data are **held or will be held in a public repository**, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: *All XXX files are available from the XXX database (accession number(s) XXX, XXX).*

- If the data are all contained **within the manuscript and/or Supporting Information files**, enter the following: *All relevant data are within the manuscript and its Supporting Information files.*

- If neither of these applies but you are able to provide **details of access elsewhere**, with or without limitations, please do so. For example:

 Data cannot be shared publicly because of [XXX]. Data are available from the XXX Institutional Data Access / Ethics Committee (contact via XXX) for researchers who meet the criteria for access to confidential data.

 The data underlying the results presented in the study are available from (include the name of the third party and contact information or URL).

- This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.

* typeset

Data are available from the NIHR Clinical Trials Unit North East for researchers who meet the criteria for access to confidential data (nctu-enquiries@newcastle.ac.uk).

Additional data availability information:
Dear PLoS Medicine editorial team,

We are delighted to submit the final version of our manuscript PMEDICINE-D-18-01834R2 entitled "Behavioural intervention for weight loss maintenance vs. standard weight advice in adults with obesity: a randomised controlled trial in the UK (NULevel Trial)" to PLOS Medicine.

Here we briefly summarise the final changes we made in response to Dr Richard Turner’s decision letter and the letter from the production team regarding remaining issues concerning production requirements.

1) Please ensure that the CRediT author contributions listed under each co-author are completed in full.

We have checked this and can confirm that the missing information for Alison Steele was an oversight during the initial data entry which we have now corrected.

2) Please accurately complete the 'Competing Interests' section on our submission form, including any COIs declared by your co-authors.

We have now added the declared interest of Professor Batterham to the CoI section.

3) In accordance with PLOS' data policy, please ensure that your Data Availability Statement in the submission form clearly identifies how readers can access your data.

We checked this and are contemp that current text is in line with PLoS policy and with our previous discussions with the editors.

4) Please indicate the corresponding author in the byline by placing an asterisk (*) after their affiliation number. Please include the corresponding author’s email address on the title page of your manuscript, indicated by an asterisk (*). Only an asterisk and the email address itself are required.

We have changed this accordingly.

5) Please remove embedded figures from your manuscript file and ensure the most up to date versions of your figures are uploaded to our submission system as separate TIF or EPS files. Please do not remove the figure legends and captions.

We have changed this accordingly.

6) Please ensure that all main figures are referenced as "Fig 1", "Fig 2", etc. (including capitalization), rather than "Figure 1", "Figure 2", etc. Please note, however, that the file names themselves must not include the space, i.e. "Fig1.tif", "Fig2.eps".

We have changed this accordingly.

7) Please put all reference citations in square brackets separated by either commas or dashes with no spaces, e.g. [1,2,3] or [1-3]. Only the reference citations should be in the square brackets - any text should be outside of the brackets.
We have changed this accordingly.

8) Please make sure all references are cited in ascending numerical order in the text. Currently a citation to reference #39 is missing.

Thank you, we spotted the error and corrected the reference.

9) Please ensure your references are in the style of PLOS Medicine (ICMJE/Vancouver style).

Thank you, we checked this thoroughly.

10) Please remove the Appendices from the end of your manuscript, and upload this as a supporting information file, named S1 Appendix.

We have executed this accordingly.

11) Please rename your CONSORT checklist S1 CONSORT. Please replace the page numbers in your CONSORT statement with paragraph numbers per section (e.g. "Methods, paragraph 1") since the page numbers of the final published paper may be different from the page numbers in the current manuscript.

We have executed this accordingly.

13) Your Ethics approval does not need to be published. Please remove this from the file inventory.

Removed.

14) Please ensure that each supporting information file has a legend at the end of the manuscript file, after the Reference list. This should include S1 CONSORT, S1 Protocol, and S1 Appendix.

We have executed this accordingly.

Feedback from the editor Dr Richard Turner

Thank you for accepting our paper for publication and for the helpful and constructive peer review process.

Requests from Editors:

1. limitations in the abstract as the final sentence of the ‘Methods and Findings’ section

We have added this as a final sentence as suggested.
2. author summary is in a supplementary document – please move to the main text, after the abstract.
We have moved the author summary in the main document after the abstract.

3. I'd de-bold table 3
We de-bolded the variable names.

4. "In this study ..." at the start of the discussion section, perhaps
We added this accordingly.

5. quite a few issues with reference formatting – please be consistent and in house style
We worked with Endnote using PLoS style and acknowledge that there were some issues which we sought to correct manually.

6. CONSORT checklist has page numbers – please adjust to sections and paragraph numbers as page numbers often change on publication due to formatting.
We changed this accordingly.

7. Data: please provide a link or email address (not a corresponding author) for readers who want to request access – currently you just say that data are available from the NIHR clinical trials unit.
Thank you, we added the contact details.

8. Box 1 – we do not have boxes generally in terms of formatting. Can you please convert this to a Table or other and reorder other tables and shout outs in the main text.
We transformed the box into a Table

9. The main text has some instances of red. Please correct
The instances of red were retained in the manuscript to indicate previous changes. We have no removed all instances of red and not highlighted additional changes as we merely implemented the suggestions of the editor and the editorial team at this stage.

We hope the manuscript is now ready for type setting. Thank you.

Falko Sniehotta
RESEARCH ARTICLE

Behavioural intervention for weight loss maintenance vs. standard weight advice in adults with obesity: a randomised controlled trial in the UK (NULevel Trial)

Falko F. Sniehotta1,2*, Elizabeth H Evans1,3,4, Kirby Sainsbury1, Ashley Adamson1,2,3, Alan Batterham5, Frauke Becker1,6, Heather Brown1, Stephan U. Dombrowski7, Dan Jackson8, Denise Howell1, Karim Ladha9, Elaine McColl1, Patrick Olivier9, Alexander J. Rothman9, Alison Steel10, Luke Vale1, Rute Vieira1, Martin White1–11, Peter Wright4, Vera Araújo-Soares1,4

1 Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
2 Fuse, the UK CRC Centre for Translational Research in Public health, Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
3 Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
4 School of Psychology, Newcastle University, Newcastle upon Tyne, UK
5 Centre for Rehabilitation, Exercise and Sport Sciences (CRESS), Teesside University, Middlesbrough, UK
6 Health Economics Research Centre, University of Oxford, Oxford, UK
7 Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada
8 Open Lab, School of Computing Science, Newcastle University, 89 Sandyford Road, Newcastle upon Tyne, UK
9 Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, USA
10 Newcastle Clinical Trials Unit, Newcastle University, 1-4 Claremont Terrace, Newcastle upon Tyne, UK
11 Centre for Diet and Activity Research (CEDAR), MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Institute of Metabolic Science, Cambridge, UK

* falko.sniehotta@ncl.ac.uk

Professor Falko Sniehotta, Institute of Health & Society, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK

Tel: +44 191 2083815

This trial is registered with the ISRCTN registry (ISRCTN14657176; registration date 20th March 2014).
Abstract

Background

Scalable weight loss maintenance interventions for adults with obesity are lacking but vital for the health and economic benefits of weight loss to be fully realised. We examined the effectiveness and cost-effectiveness of a low-intensity technology-mediated behavioural intervention to support weight loss maintenance in adults with obesity after clinically-significant weight loss (≥5%), compared to standard lifestyle advice.

Methods and Findings

The NULevel trial was an open-label randomised controlled superiority trial in 288 adults recruited April 2014 to May 2015 with weight loss of ≥5% within the previous 12 months, from a pre-weight loss BMI of ≥30kg/m². Participants were self-selected and the majority self-certified previous weight loss. We used a web-based randomisation system to assign participants to either standard lifestyle advice via newsletter (control arm) or a technology-mediated low intensity behavioural weight loss maintenance programme (intervention arm). The intervention comprised a single face-to-face goal-setting meeting, self-monitoring and remote feedback on weight, diet and physical activity via links embedded in short message service (SMS). All participants were provided with wirelessly-connected weighing scales but only participants in the intervention arm were instructed to weigh themselves daily and that they would receive feedback on their weight. After 12 months we measured the primary outcome, weight (kg) and also frequency of self-weighing, objective physical activity (via accelerometry), psychological variables and cost-effectiveness. The study was powered to detect a between-group weight difference of ±2.5kg at follow up. Overall, 264 participants (92%) completed the trial. Mean weight gain from baseline to 12 months was 1.8kg (95% CI 0.5 to 3.1) in the intervention group (n=131) and 1.8kg (95% CI 0.6 to 3.0) in the control group (n=133). There was no evidence of an effect on weight at 12 months (difference in adjusted mean weight change from baseline: -0.07; 95% CI 1.7 to -1.9, p = 0.9). Intervention participants weighed themselves more frequently than control participants and were more physically active. Intervention participants reported greater satisfaction with weight outcomes, more planning for dietary and physical activity goals and for managing lapses, greater confidence for healthy eating, weight loss and weight loss maintenance. Potential limitations such as the use of connected weighing study in both trial arms, the absence of a measurement of energy intake and the recruitment from one region of the UK are discussed.
Conclusions

There was no difference in the weight loss maintenance of participants who received the NULevel intervention compared to participants who received standard lifestyle advice via newsletter. The intervention affected some, but not all, process-related secondary outcomes of the trial.

Trial registration

This trial is registered with the ISRCTN registry (ISRCTN14657176; registration date 20 March 2014).

Keywords

Behaviour; Randomized controlled trial; Obesity; Overweight; Weight loss; Weight loss maintenance
Why was this study done?

• Obesity is a major contributor to preventable life-years lost worldwide.
• Effective behavioural weight loss interventions are widely available but weight loss is often followed by weight regain.
• Effective interventions to slow down weight regain are intensive and not widely available. There is a need for accessible, effective interventions which can support individuals who have lost weight.

What Did the Researchers Do and Find?

• We carried out a randomized controlled trial involving 288 people with obesity who had recently lost weight. Participants were given wirelessly-connected weighing scales and they were randomly assigned into two groups and studied over 12 months.
• One group received standard lifestyle advice via newsletter and no feedback on their use of the scales. The other group received the NULevel intervention, consisting of a single face-to-face meeting and subsequent weight maintenance support delivered via SMS messages with embedded links. The intervention was developed based on maintenance theory and effective behavioural principles such as selfmonitoring, goal setting, feedback and reinforcement.
• Intervention participants weighed themselves more frequently than control participants and were more physically active but we found no difference in weight regain between the two groups at 12 months.

What Do these Findings Mean?

• The study shows that the NULevel intervention on its own does not seem to slow the rate of weight regain.
• Further work is required to identify the optimal set and dose of intervention strategies needed to effectively support people who have lost weight in keeping it off.
Introduction

Helping people with obesity to avoid weight regain after clinically significant weight loss (≥5% [1]) is vital to tackle the increasing global burden of obesity-linked preventable morbidity and mortality [2]. Effective behavioural weight loss interventions are widely available [3], but interventions to support individuals in maintaining weight loss that are scalable for population delivery and impact are not [4]. Maintenance interventions are needed because obesity is a chronic, relapsing condition in which a third of weight loss is typically regained in a year and the rest within 3–5 years [5,6]. This rate of recidivism greatly attenuates the health and economic benefits of weight loss [7] and has been branded the most substantial current problem in obesity management [8].

Trials of evidence-based interventions to support adults with obesity in weight loss maintenance are rare, heterogeneous and of variable quality [4]. A recent meta-analysis of such trials concluded that intensive lifestyle interventions, targeting both dietary and physical activity behaviours, can effectively slow down weight regain in these individuals [4]. Most trials began by inducing weight loss in participants, before offering maintenance support to those who lost a specified amount of weight [9,10], limiting their applicability to only individuals who responded well to a particular weight loss treatment. As such, much of the existing evidence-base for weight loss maintenance does not take into account the wide variety of methods by which individuals with obesity initially lose weight. Few previous studies have recruited participants who undertook initial weight loss independently of the maintenance intervention programme [11-13]. Moreover, although effective, these interventions involved multiple one-to-one or group-based participant contacts over prolonged periods, which may reduce their cost-effectiveness and limits their scalability. Systematic review evidence does not suggest that internet interventions are more effective than control conditions in reducing weight regain [4].

Mobile internet technology can potentially provide individually-tailored behavioural weight management support at scale [14,15] and link with wirelessly-connected personal weighing scales for weight self-monitoring [16], but this combination has not been used in previous weight loss maintenance trials. Regular self-weighing appears to be a beneficial component of weight loss maintenance interventions [11,17], as does the use of dietary and physical activity behavioural strategies based on self-regulation theory [11,12,18]. A systematic review of existing evidence [4] found insufficient evidence to conclude whether more intensive versions of lifestyle interventions are more effective than less intensive versions [13,19]. Lower intensity interventions delivered via mobile internet technology, incorporating regular self-weighing and self-regulatory behavioural
strategies, may address the need for flexible, scalable weight loss maintenance interventions for obese adults who have achieved clinically significant weight loss.

Our aim was to determine whether a lower intensity, mobile internet technology-assisted behavioural intervention could reduce weight regain among adults with obesity with clinically significant weight loss achieved outside of a research context and if such an intervention is cost-effective, compared to standard lifestyle advice.

Methods
A full protocol detailing the trial methods has been published previously [16]. We obtained ethics approval from the East Midlands-Derby National Research Ethics Service (REC: 14/EM/0069; 6th February 2014). Individual participants provided written informed consent prior to commencement of the baseline measurements. The trial was registered on the ISRCTN registry on 20th March 2014 (ISRCTN14657176: http://www.controlled-trials.com/ISRCTN14657176). Any adverse events were monitored and recorded by the trial administrator using standard procedures of the Clinical Trials Unit.

Participant screening and recruitment
288 participants were recruited from a range of sources across North East England between 28th April 2014 and 27th May 2015. Major sources of recruitment comprised commercial weight loss providers (17.3%), word of mouth (15.6%), social media (15.3%) and local employer staff websites (15.1%). Other sources included the university’s public-facing homepage (6.9%), local council public websites and newsletters (6.6%), invitation letters sent to participants in previous (unrelated) university research (5.6%), local flyers and posters (2.1%), local radio and newspaper advertisements (2.1%) and a local authority-commissioned weight management programme (1.0%). A further 1.4% of participants were recruited through other means and 10.1% did not specify the recruitment channel.

Individuals were eligible to take part if they were aged ≥18 years, had a body mass index (BMI) of ≥30 kg/m² in the 24 months preceding trial entry (≥28 kg/m² for individuals of South Asian descent) and had lost ≥5 % body weight in the 12 months preceding trial entry. Individuals were requested to provide written verification of weight loss from a physician, weight loss counsellor or friend/family member; if this was unavailable then participants self-certified their weight loss. To participate, individuals needed to be able to use a standing scale, to be willing and able to attend study visits at Newcastle University and to have use of an internet-enabled mobile telephone.
Individuals were ineligible to take part if they had lost weight through illness or surgical procedures, or were pregnant, planning to become pregnant during the study period, or breastfeeding an infant <6 months old. Other exclusion criteria were current involvement in other weight research studies, an inability to understand written or spoken English, a diagnosis of an eating disorder or condition that significantly limited physical activity, a baseline weight of >175 kg (due to capacity limitations of the study scales) and plans to leave the geographical area for a prolonged time during the study period. A data collector, blinded to subsequent randomised group allocation, enrolled participants into the trial.

Randomisation and blinding
A researcher used a secure web-based randomisation system to allocate eligible, consenting participants to one of two groups after they completed baseline assessment, to receive either standard lifestyle advice via newsletter (control group) or the behavioural intervention (intervention group). Randomisation occurred in a 1:1 ratio (144 in each arm), and was stratified by sex and prior weight loss (<10 % vs ≥10 %). Concealment of allocation was achieved using the web-based randomisation system, based on variable-length blocks, provided by the Newcastle Clinical Trials Unit via Data Architects Ltd. (Newcastle upon Tyne, UK). Research staff involved in assessing the study outcomes were blinded to the allocation of participants. Participants were asked not to reveal their trial allocation at follow-up assessments, and instances where participants divulged their allocation status (three participants in the intervention and one in the control arm) were documented. The statistician undertaking data analysis was unblinded.

Allocation of study scales
All participants received a set of digital-display wireless body weight scales at the baseline appointment and were shown how to use them. Every time participants weighed themselves, the scales sent the recorded weight over the mobile phone network to the online study interface, via an internal multi-network SIM card. Weights were automatically recorded, dated and time-stamped for each participant. Participants were informed that all weight data were recorded, but only those allocated to the intervention arm would receive feedback on their weight progress.

Intervention
The intervention development process followed Medical Research Council guidance for the development of complex interventions [20] and has been described previously [16]. Briefly, intervention content was designed in line with self-regulation theory [21] within the context of the health action process approach [22,23]. Intervention content also drew on the features of previously
effective self-regulation weight loss maintenance interventions [11], a systematic review of theories of behavioural maintenance [24], and findings of a systematic review and meta-analysis of weight loss maintenance interventions [4]. We used phone-based mobile internet technology to help participants monitor their weight, set behavioural goals, track goal progress and plan for risk factors for regain, and to provide feedback and reinforcement, drawing on effective behavioural principles [25]. The intervention was delivered using the combination of a single face-to-face meeting with an intervention team member and regular automated SMS (at least one every two days) with embedded links and other content (triggered by participants' weight and weekly online-questionnaire data), along with personalised SMS generated by the intervention team. Individual telephone calls with a member of the research team could be scheduled on participant request. The core intervention components are summarised in Table 1.

Intervention participants were encouraged to weigh themselves daily and use the online study portal to monitor their weight on a graph showing the weight data sent by their scales. When the intervention software detected weight changes, the online study interface sent participants automated feedback via SMS. In this way, feedback was tailored to participants' weight trajectory, providing low-intensity positive-reinforcement when the body weight was stable and higher intensity prompts to re-engage with weight control strategies when body weight increased above a threshold specified by the individual participant. Participants met a research team member (psychologist) once, for around an hour, to learn about the intervention and receive support to set and plan for behavioural goals (diet and physical activity), plan for relapse prevention and to learn how to self-monitor their diet, physical activity and weight in the transition from weight loss to weight loss maintenance. The development of this consultation has been described elsewhere[26]. Participants were given a pedometer (Omron UK Ltd, Milton Keynes, UK) and prompted to record their progress towards physical activity goals (step counts) and dietary goals in a weekly diary on the study interface. When data were entered, automated feedback on behavioural goal progress was sent by the online study interface via SMS.

Table 1. NULevel Intervention components

<table>
<thead>
<tr>
<th>Daily weighing with wirelessly connected scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>All participants received a set of digital body-weight scales at the baseline assessment appointment. The scales featured an embedded SIM card, which wirelessly transmitted each weight over the mobile phone network to the online study interface. Intervention participants were asked to weigh themselves daily and received feedback on their weight progress by SMS; control participants</td>
</tr>
</tbody>
</table>
received no instructions or feedback.

One-to-one consultation
Soon after randomisation, intervention participants attended a single one-to-one consultation at Newcastle University with a trained facilitator (psychologist) to help support the transition from weight loss to Weight Loss Maintenance (WLM). The facilitator evaluated the sustainability of participants’ current diet and physical activity for WLM and supported them in setting maintenance goals and developing action plans for weight, diet and physical activity. Participants were taught to self-monitor their weight, diet and physical activity goal progress using the online study interface and a pedometer (provided). Participants also received support in planning for scenarios with a high risk of behavioural lapses and concomitant weight regain.

Online study interface
Participants were prompted to log on to an online study interface regularly, to view a real-time weight graph and record weekly progress towards dietary and physical activity goals (self-monitoring). They could also request further contact with the intervention team. The interface facilitated the provision of intervention content via SMS (see below).

SMS text messages and support
Participants received tailored, automated SMS feedback on their recent weight, dietary and physical activity goal progress from the online study interface. Participants with a stable weight received only minimal reinforcement, whereas participants with regain received more intensive support and encouragement to re-engage with weight control strategies. SMS reminders were sent to prompt participants to weigh themselves and complete their weekly diary. The participant and research team used SMS for ad hoc, unscripted communications. Finally, participants also received an automated schedule of SMS to support WLM over the course of the intervention, with links and other embedded content drawing on theoretical themes of behavioural maintenance.

Control
Participants in the control arm did not receive any instructions regarding frequency of use for the study scales although they were made aware, for ethical reasons, that the study team could see their weight data. They received standard lifestyle advice on four occasions, three months apart, delivered in SMS with embedded links. Content was drawn from the NHS Choices website (www.nhs.uk/livewell) and included information on healthy food swaps, 100-calorie snacks, healthy breakfasts, and how to read nutritional labels. Intervention participants also received these four messages as part of their automated schedule of SMS. Other than to arrange follow-up assessment, no further scheduled contact with the control group occurred.

Outcome assessment
All outcome assessments were made by research staff not involved in any other aspect of the study and blinded to the participants’ group allocation. Outcome assessment took place at Newcastle University or at a community hall venue. Participants received £25 shopping vouchers for attendance at baseline and £25 shopping vouchers for attendance at 12-month follow up. Height, age and gender were measured at baseline; all other measurements were taken at baseline and 12-month follow-up.

Measures

The primary outcome was change in weight (kg) from baseline (i.e. randomisation) to 12 months. Body weight, clothed without shoes, was measured to the nearest 0.1 kg using digital portable scales (SECA model 875). Height was measured to the nearest 1 mm using a Leicester Height Measure stadiometer (both SECA UK Ltd: Birmingham, UK). BMI was calculated as body weight (kg) divided by the square of height (m). Waist circumference and hip circumference were recorded with an anthropometric tape measure, following established protocols [27]. Body fat percentage was measured using an Omron BF306 handheld body fat monitor, and resting heart rate and blood pressure were measured using an Omron HEM-7200 arm cuff automatic BP monitor (both Omron Healthcare UK Ltd: Milton Keynes, UK). Physical activity was assessed using an ActiGraph© GT3X+ (ActiGraph, LLC., Pensacola, FL, USA) accelerometer worn for at least 8 hours per day over at least 4 days. The outcome variable was total activity counts per day (TAC/d) irrespective of intensity, and data were recorded at epochs of one minute [28].

Participants completed questionnaires to measure health-related quality of life, assessed using the EQ-5D-3L [29] and healthcare costs and service usage, assessed using a structured questionnaire that was designed bespoke for this study from an existing item bank and a database of tools (www.dirum.ac.uk). These data were used to estimate quality adjusted life years (QALYs) and costs respectively and then the incremental cost per QALY gained. Satisfaction with weight outcomes was assessed using the Weight Outcomes Satisfaction Scale [30]. Self-efficacy for healthy eating, physical activity and weight loss maintenance were measured using adaptations of existing questionnaires [31,32], as were action planning and coping planning [33]. Automaticity of healthy eating, physical activity and self-weighing were assessed using adapted versions of the Self-Report Behavioural Automaticity Index [34,35]. Use of self-regulation strategies for weight loss maintenance was measured via the Regulatory Focus Questionnaire [23,36,37], ego-depletion was assessed using a questionnaire developed for this study and social support was measured using the ENRICH'D Social Support Inventory [38]. We also compared frequency of self-weighing in both trial arms (as automatically recorded, date-stamped and time-stamped on the study interface).
Fidelity assurance

The fidelity of delivery of the face-to-face meetings was assessed by coding 20 (15% of 131 sessions) randomly-selected audio recordings. A coding scheme was developed from the intervention session manual and included 15 pre-specified intervention components (e.g., introduction, agenda setting, review of recent weight loss) and 15 pre-specified BCTs from the CALO-RE taxonomy (e.g., goal setting for outcome and behaviour, action planning, barrier identification). The coding scheme was developed, and all coding completed by one author (SUD) who had not been involved in the delivery of the intervention. Fidelity scores were summarised per component and BCT (across sessions) and per session (across components/BCTs), and an average fidelity score across sessions and components/BCTs was computed.

Statistical analysis

Sample size calculations estimated that two groups of 122 participants providing data on the primary outcome (weight change at 12 months post-randomisation) were required to detect a 2.5 kg between-groups mean difference with 90% statistical power, given a type 1 error rate of 5% and assuming a standard deviation of weight change of 6 kg. Assuming a rate of 15% loss to follow-up, a total sample of 288 randomised participants was needed. The parameters of this power calculation were derived from a systematic review of comparative behavioural WLM trials [4].

All analyses were conducted according to the intention-to-treat principle, using STATA version (14.1) statistical software. We used univariate descriptive statistics to summarise the characteristics of the study sample at baseline. We used multivariate linear regression analyses to compare the intervention and control groups on weight at 12 months post-randomisation, adjusting for baseline weight, stratification variables (sex of the participant and a binary indicator of whether the participant lost more than 10% of their body weight) and index of multiple deprivation (IMD)[39]. Results were in the form of a 95% confidence interval for the mean difference in weight between participants randomised to the intervention arm and participants randomised to the control arm. Where the standardised residuals were not normally distributed, an alternative confidence interval was calculated using resampling (bootstrap) procedures. Secondary outcomes were analysed using the same approach with an appropriate error structure adopted for each particular measure.

Health economic analyses

A within-trial cost-utility analysis was used to compare the NULevel intervention with usual practice. Trial data and seemingly unrelated regressions (SUR) were used to estimate costs (associated with
the delivery of the intervention, health care, private health care, use of gyms, and fitness classes) in 2015 pounds Sterling and outcomes of the intervention in terms of changes in health-related quality of life measured by the EQ-5D-3L compared with usual practice over a 12-month follow-up. From these data, the incremental cost per QALY gained at 12 months was calculated. Sensitivity analyses accounted for a potential effect of reductions in salary costs associated with the delivery of the intervention.
Results

Participant characteristics

Between 28th April 2014 and 27th May 2015, 813 individuals volunteered to participate in the NULevel trial and were assessed for eligibility. Reasons for exclusion included ineligibility (386; 47%), non-response or withdrawal following initial application (n=114; 14%) and application to join the trial after it had closed to recruitment (n=25; 3%). Specific reasons for ineligibility are provided in Fig 1, and 122 people were ineligible for two or more of the specified reasons. Overall, 288 individuals (34%) were successfully randomised, and Fig 1 shows the flow of these participants through the trial. 48 trial participants (16.7%) provided objective verification of their weight loss prior to trial entry, and 240 self-certified it (83.3%).

Fig 1: CONSORT 2010 Flow Diagram

The final data collection date for the primary and secondary outcome measures was 24th May 2016. 264 participants took part in the 12 month follow up, giving a retention rate of 92%; reasons for loss to follow up are shown in Fig 1. Retention did not differ between the intervention and control groups. Participant baseline characteristics are shown in Table 2 for both study groups. There were no systematic differences between groups at baseline. PA data was available for 226 participants in the 12 month follow up with a median number of 7 (range: 4 to 11) valid days wearing the accelerometer (control: 6 (4 to 11) and intervention: 7 (4 to 11). The mean average number (SD) of vector magnitude counts per day at 12 months, for the control group, was 430503.8 (156480.4) and 448920.3 (140190.9) for the intervention group.

At baseline, all 288 weight values were obtained by the data collector. At 12 month follow up, 253 weight values were obtained by the data collector, whilst 11 were obtained from the most recent weight recorded by their allocated SIM-enabled weighing scales (within the last month). Remote data were used only when the participant had weighed themselves frequently and regularly enough to establish a pattern or had stepped on their scales on the day of completing the questionnaires online, as requested, so we could be confident that the weight was accurate.

No adverse events were reported during the course of this trial.

Table 2: Baseline characteristics of all individuals included in the NULevel trial

<table>
<thead>
<tr>
<th>Baseline characteristic</th>
<th>Control group (n = 144)</th>
<th>Intervention group (n = 144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.6 (11.4)</td>
<td>42.0 (11.6)</td>
</tr>
<tr>
<td>Variable</td>
<td>Intervention Group</td>
<td>Control Group</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Female – n (%)</td>
<td>113 (78.5%)</td>
<td>110 (76.4%)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>85.5 (15.9)</td>
<td>85.6 (17.5)</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.67 (0.09)</td>
<td>1.67 (0.09)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.8 (5.2)</td>
<td>30.9 (5.5)</td>
</tr>
<tr>
<td>Pre-trial 12-month highest weight (kg)</td>
<td>99.8 (20.7)</td>
<td>98.2 (19.5)</td>
</tr>
<tr>
<td>Pre-trial weight loss (kg)</td>
<td>- 14.4 (11.6)</td>
<td>- 12.6 (7.2)</td>
</tr>
<tr>
<td>Pre-trial weight loss (% highest)</td>
<td>- 13.9 (7.8)</td>
<td>- 12.8 (6.5)</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>94.6 (14.7)</td>
<td>93.6 (13.4)</td>
</tr>
<tr>
<td>Hip circumference (cm)</td>
<td>110.3 (11.6)</td>
<td>110.0 (11.2)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>121.4 ± 18.7</td>
<td>123.9 (16.3)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>77.6 (10.1)</td>
<td>76.5 (10.1)</td>
</tr>
<tr>
<td>Resting heart rate (BPM)</td>
<td>70.6 (11.6)</td>
<td>71.9 (11.0)</td>
</tr>
<tr>
<td>Physical activity (TAC/day)</td>
<td>476753 (162930)</td>
<td>476615 (160932)</td>
</tr>
</tbody>
</table>

Highest level of education – n (%)
- Bachelor’s degree or higher: 71 (50.0%) vs. 81 (56.2%)
- Post-16 qualification (e.g. HND /A level): 31 (21.5%) vs. 34 (23.6%)
- GCSE/O Level or below: 41 (28.5%) vs. 29 (24.3%)

Employment status – n (%)
- Full employment: 88 (61.1%) vs. 87 (60.4%)
- Part-time employment: 25 (17.4%) vs. 25 (17.4%)
- Retired: 10 (6.9%) vs. 17 (11.8%)
- No paid employment: 21 (14.7%) vs. 15 (10.5%)

Household income – n (%)
- < £10000: 6 (4.2%) vs. 5 (3.5%)
- £10001 – £40000: 66 (45.9%) vs. 70 (48.7%)
- £40001 – £70000: 52 (36.1%) vs. 50 (34.7%)
- >£70000: 20 (13.9%) vs. 19 (13.2%)

Values are mean (SD) for continuous variables and frequencies (%) for categorical variables.

TAC/day: total activity counts per day.

Outcomes

Using intention-to-treat model-based regression analyses, we found no evidence of differences in the primary outcome, weight at 12 months from baseline, between the intervention group and the
control group, adjusted for baseline weight, stratification variables (sex and prior weight loss) and IMD (see Table 3). Intervention participants mean change was 1.8 kg (SD: 7.4) and control participants mean change was 1.8 kg (SD: 7.1). Regression analyses of objective physical activity data, obtained using accelerometers, indicated that both groups became less physically active over the study. There was a small but significant difference between the arms such that intervention group participants were more physically active at 12 month follow up than control participants, adjusting for baseline levels of physical activity, stratification variables, IMD and device wear-time. No significant difference in resting heart rate between groups was found at follow-up.

Table 3 Weight and physical activity outcomes at baseline and 12-months

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Intervention</th>
<th>Between-group comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>12m</td>
<td>Baseline</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>85.2 (15.7)</td>
<td>87.0 (16.7)</td>
<td>85.1 (17.5)</td>
</tr>
<tr>
<td>Physical activity (TAC/day)</td>
<td>476752.7 (162929.6)</td>
<td>430503.8 (156480.4)</td>
<td>476614.8 (160932.4)</td>
</tr>
</tbody>
</table>

Values are mean (SD). * Bias-corrected and accelerated CI obtained using bootstrapping due to non-normal distribution of residuals. Note. Between-group comparisons were carried out using multivariable regression analyses, adjusted for baseline, stratification variables and index of multiple deprivation. Weight comparisons were based on 133 control participants and 131 intervention participants. PA comparisons were based on 86 control participants and 92 intervention participants.

Weight data from the wirelessly-connected scales used by all participants showed that those in the intervention group weighed themselves more frequently, per week, than control group participants (4.4 (1.4) vs 1.8 (1.7) times per week; mean (SD)). Overall, intervention group participants weighed themselves on an average of 62.8% (20.3) of days spent in the trial; control group participants weighed themselves on an average of 26.1% (24.4) of days.

Table 4 shows mean values and between-group differences for the psychological variables at baseline and 12 months for the 129 control participants and 124 intervention participants who completed the questionnaires at follow-up. Intervention and control groups did not differ on self-
efficacy, perceived behavioural control or automaticity for physical activity, and nor did they differ on regulatory focus, ego depletion or social support. Compared to control participants, intervention participants reported: greater satisfaction with weight outcomes; greater habit strength for self-weighing; higher self-efficacy, perceived behavioural control, action planning, coping planning and automaticity for healthy eating; higher action planning and coping planning for physical activity and greater confidence for weight loss and weight loss maintenance.

Table 4 Psychological variables at baseline and 12 months

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control (n=129)</th>
<th>Intervention (n=124)</th>
<th>Between-group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline 12m</td>
<td>Baseline 12m</td>
<td>Mean diff 95% CI</td>
</tr>
<tr>
<td>Satisfaction with weight outcomes (1-5)</td>
<td>4.0 (1.2)</td>
<td>2.7 (1.4)</td>
<td>-0.65 -1.0, -0.3*</td>
</tr>
<tr>
<td>Healthy eating self-efficacy (1-4)</td>
<td>2.8 (0.6)</td>
<td>2.6 (0.7)</td>
<td>-0.30 -0.48, -0.15*</td>
</tr>
<tr>
<td>Physical activity self-efficacy (1-4)</td>
<td>2.9 (0.8)</td>
<td>2.9 (0.7)</td>
<td>-0.09 -0.25, 0.07</td>
</tr>
<tr>
<td>Healthy eating perceived behavioural control (1-7)</td>
<td>5.1 (1.2)</td>
<td>4.9 (1.4)</td>
<td>-0.46 -0.77, -0.15*</td>
</tr>
<tr>
<td>Physical activity perceived behavioural control (1-7)</td>
<td>4.6 (1.5)</td>
<td>4.7 (1.5)</td>
<td>-0.17 -0.55, 0.25*</td>
</tr>
<tr>
<td>Weight loss confidence (1-7)</td>
<td>5.2 (1.3)</td>
<td>4.3 (1.6)</td>
<td>-0.59 -0.99, -0.18*</td>
</tr>
<tr>
<td>Weight loss maintenance confidence (1-7)</td>
<td>4.2 (1.6)</td>
<td>4.1 (1.7)</td>
<td>-1.10 -1.49, -0.68*</td>
</tr>
<tr>
<td>Action planning (healthy eating; 1-4)</td>
<td>3.1 (0.9)</td>
<td>3.3 (0.7)</td>
<td>-0.24 -0.48, -0.01*</td>
</tr>
<tr>
<td>Coping planning (healthy eating; 1-4)</td>
<td>2.6 (0.9)</td>
<td>2.8 (0.9)</td>
<td>-0.32 -0.52, -0.11</td>
</tr>
<tr>
<td>Action planning (physical activity; 1-4)</td>
<td>2.7 (1.1)</td>
<td>2.4 (1.0)</td>
<td>-0.25 -0.49, -0.02*</td>
</tr>
<tr>
<td>Coping planning (physical activity; 1-4)</td>
<td>2.2 (0.9)</td>
<td>2.4 (1.0)</td>
<td>-0.28 -0.50, -0.05</td>
</tr>
</tbody>
</table>
Automaticity (healthy eating; 1-4) | 2.6 (0.8) | 2.7 (0.9) | 2.7 (0.8) | 3.0 (0.8) | -0.21 | -0.39, -0.02
--|---|---|---|---|---|---
Automaticity (physical activity; 1-4) | 2.4 (0.9) | 2.4 (1.0) | 2.4 (0.9) | 2.7 (0.9) | -0.19 | -0.39, 0.01
--|---|---|---|---|---|---
Automaticity (self-weighing; 1-4) | 2.7 (1.0) | 2.7 (1.0) | 2.7 (1.1) | 3.1 (1.0) | -0.43 | -0.64, -0.19*
--|---|---|---|---|---|---
Regulatory focus (promotion; 6-30) | 20.7 (3.3) | 20.7 (3.6) | 21.4 (3.4) | 20.9 (3.3) | 0.12 | -0.57, 0.86*
--|---|---|---|---|---|---
Regulatory focus (prevention; 5-25) | 17.5 (3.8) | 17.7 (4.0) | 17.2 (3.8) | 17.3 (3.6) | 0.04 | -0.58, 0.69*
--|---|---|---|---|---|---
Ego depletion (12-60) | 31.3 (9.0) | 34.2 (9.4) | 29.9 (8.4) | 32.1 (10.0) | 1.54 | -0.53, 3.60
--|---|---|---|---|---|---
Social support (6-36) | 24.6 (5.4) | 24.0 (5.9) | 25.5 (4.5) | 24.5 (5.8) | -0.31 | -1.46, 0.85*

Values are mean (SD). * As the residuals were non-normally distributed this is a bias-corrected and accelerated CI obtained using bootstrapping. Between-group comparisons were carried out using multiple regression analyses, adjusted for baseline, stratification variables and index of multiple deprivation. Boldface indicates statistical significance.

Fidelity of intervention delivery

The fidelity of delivery of both intervention components (97%) and BCTs (92%) was high. Specifically, 12/15 intervention components and 11/15 BCTs were rated as delivered in all sessions. Review of the 4-day food diary was delivered with lower fidelity (75% of sessions), typically because participants did not complete the diary prior to the session or forgot to bring it with them. Agenda setting (90%) and plan for physical activity setbacks (95%) were also not rated as delivered in all sessions, which may reflect a recording issue rather than actual failure to deliver components (i.e., the audio started part-way or stopped recording prior to the conclusion of the session). The BCTs that were not consistently delivered reflected those that were optional and to be delivered only under certain circumstances (e.g., information on where and when to perform the behaviour was used in the context of goal setting if the participant was struggling to generate their own ideas: 55%). It is therefore likely that fidelity was even higher than the ratings of 97% and 92% suggest.

Economic evaluation

The average total cost (unadjusted) was estimated as £680 (663) in the intervention group and £583 (833) in the control group. The SUR estimate of the incremental cost to deliver the intervention was
£131 (95% CI: -67, 338) per participant. The difference in mean QALYs gained between the intervention and control arms after adjusting for baseline EQ-5D-3L was 0.002 (95% CI: -0.014, 0.018). The probabilities for the intervention to be cost-effective at the standard thresholds of £20,000 to £30,000 for society’s willingness to pay for a QALY gained was between 34-41%, implying that it is unlikely the intervention could be considered cost-effective based on current evidence. This probability increased to around 43-47% in a sensitivity analysis accounting for a scenario of 50% lower intervention delivery costs, but the intervention was still likely not to be considered cost-effective in its current form.

Discussion

In this study, there was no evidence of an effect of a low intensity behavioural intervention on weight loss maintenance at 12 months compared to standard lifestyle advice and provision of externally monitored weighing scales in a self-selected sample of women and men with obesity prior to clinically significant weight loss. Participants randomised to receive the intervention had higher levels of objectively measured physical activity at 12 months and weighed themselves more frequently than control participants throughout the study. Intervention participants also differed from controls on multiple psychological variables at 12-months that are thought to be determinants of successful weight loss maintenance, including greater levels of outcome satisfaction, confidence and planning.

Our findings of no difference in regain between groups may appear at odds with a meta-analysis [4] that found that lifestyle interventions were associated with lower regain amongst individuals with obesity following weight loss. However, the trials included in the aforementioned analysis differed from the current trial with regard to delivery modality, intervention intensity, and sample composition. Previous successful interventions have tended to involve frequent face-to-face [13] or lengthy telephone-based [10] intervener contacts over prolonged periods of time, greatly limiting scalability, and integration of technological innovations with such approaches to deliver effective interventions at scale is highly desirable [15]. However, similar null results to those obtained in the current trial have been reported in previous lifestyle intervention trials where internet technology was used to deliver some or all of the intervention content [9,11,40,41]. A recent UK trial of the SMS-supported weight maintenance programme ‘Lighten Up Plus’ found no evidence of effectiveness of the programme at 3 or 9 months [42]. These findings indicate that there is a balance to be struck between scalability, effectiveness and cost-effectiveness and that the highest value based on the current evidence may be obtained from interventions involving repeated personal contact.
The absolute amount of weight regained by the NULevel intervention group resembles the regain of the intensive intervention group of Wing et al’s study [11], which utilised a similar population and theoretical perspective to the current trial. In contrast, the 12-month regain of the NULevel no-intervention control group was significantly lower than expected when compared to control arms in similar RCTs [11,12]. This may be partially explained by the relatively high level of self-weighing (twice weekly, on average) amongst the control group, as objectively recorded by the wirelessly connected study scales. The provision of wireless body weight scales to both, intervention and control arm in NULevel with the information that the study team could see participants’ weights might have acted on its own as an active intervention in the control arm. Previous weight loss maintenance RCTs almost exclusively relied on no-intervention control arms and none recorded objective self-weighing in both groups [4]. Madigan et al reviewed self-weighing interventions for weight loss [43] and found that interventions providing ‘accountability’ (i.e. the knowledge that someone else was looking at their weights) was associated with greater intervention effects [44]. Self-weighing with the addition of accountability may have been a factor in the control group’s low regain.

An alternative explanation for the lack of evidence for an effect on maintenance in the current trial may be that the low-intensity intervention involved insufficiently frequent participant contacts compared to previous, less scalable interventions. A meta-analysis has concluded that more intensive weight loss maintenance interventions are not more effective than less intensive variants [4], but even the included ‘low intensity’ arms involved a greater number of in-person contacts than the present trial [13,19]. It is therefore possible that the intensity of the NULevel intervention was insufficient to affect regain. Although there is evidence for change in psychological outcomes, self-weighing, and physical activity, the effects might not have been strong enough to impact on the more distal measure of weight gain. Moreover, the greater levels of physical activity in the intervention group could have resulted increased energy consumption compared to the control group to compensate for excess energy expenditure.

The current trial is one of only four existing studies with long-term follow-up focused upon individuals who have lost weight entirely independently of the maintenance programme [11-13], and as such makes a valuable contribution to evidence on interventions for this group. Most individuals in the general population who attempt weight loss do so independently of professional or other support [45] yet previous maintenance interventions have overwhelmingly induced initial weight loss using standardised weight loss regimens. Such approaches result in study populations that do not accurately represent the many ways in which individuals lose weight [4]. By preferentially retaining individuals responsive to the initial weight loss programme they may also
inflate maintenance effects because maintenance and weight loss intervention content frequently overlaps. The results of this study, therefore, may be more generalizable to the general population than those of the majority of previous trials. However, a limitation of the NULevel recruitment procedure is that participants were self-selected; participants reported having lost a significant amount of weight prior to trial entry and were highly motivated to continue managing their weight. This may be a reason for lower than expected weight regain in the current control group.

Health economics

There was no evidence that the intervention was cost-effective. The within-trial analysis was conducted according to the rigorous and explicit standards expected of best practice methods [46]. No long-term modelling was conducted (as originally planned) because based on the trial findings it was considered not plausible that the extrapolation would change the conclusions of the within-trial analysis.

Study strengths and limitations

Study strengths include the recruitment of a large community sample with independently achieved, objectively verified weight loss, a randomised design with sufficient power to detect clinically important weight difference, and a high rate of study retention over the 12-month period (92%). It was the first fully-powered UK weight loss maintenance trial with a 12-month follow-up. The NULevel intervention drew on the best available evidence, utilised self-regulatory behavioural strategies with proven effectiveness in weight loss maintenance [11], and was developed in line with Medical Research Council guidelines for the development of complex interventions [16,20]. We used mobile internet technology, wirelessly connected weighing scales and an interface providing automated, tailored SMS feedback, combined with a single face-to-face meeting, to achieve the delivery of an individualised, responsive intervention requiring a far smaller proportion of intervener time than in previous maintenance trials. Potential limitations are the use of connected study scales which might have acted as an active intervention in the control arm and that all participants were recruited from the North East of England and may not generalise to other settings. Moreover, the study did not measure energy intake alongside physical activity as an outcome measure. Whilst we acknowledge that energy intake is the main determinant of obesity at population level, the lack of available unobtrusive reliable measures of food intake, with sensitivity to change in trials, means that we cannot evaluate if the NULevel intervention had an effect on energy intake.

Conclusions
In conclusion, we found no evidence of effectiveness of a remotely-delivered, low-intensity behavioural intervention based on self-regulation theory in reducing weight regain compared to standardised lifestyle advice amongst individuals with obesity and independently achieved, clinically significant weight loss who received a set of wirelessly connected weighing scales. The NULevel intervention improved various hypothesised mediators compared to the control arm including physical activity and self-weighing, but no differences in weight loss maintenance. We conclude that the incremental dose of the NULevel intervention over the active control condition might have been insufficient to affect weight outcomes. This research should inform future intervention design decisions regarding delivery modality and intensity.
References

Report Habit Index

Testing the convergent and predictive validity of an automaticity subscale of the Self-Efficacy
Strength 1

Appendices
S1 CONSORT,
S1 Protocol,
S1 Appendix.
Fig 1

Assessed for eligibility (n=813)

Excluded (n = 525)
- Declined to participate (n = 114)
- Study full/closed to recruitment (n = 25)
- Not meeting inclusion criteria (n = 386)
 - unwilling to use internet-enabled phone; n=56
 - lived too far away to attend intervention session; n=38
 - lifetime highest BMI below obese range; n=258
 - weight loss less than 5%; n=202
 - intention to become pregnant soon; n=4

Randomized (n = 288)

Allocated to intervention (n = 144)
- Received intervention (n = 131)
- Did not receive intervention (n = 13)
 - declined face-to-face session; n=1
 - moved overseas so discontinued intervention and attended follow-up (FU) 3.5 months early; n=1
 - requested that texts be switched off 2 months early but attended FU; n=1

Withdrawn/Lost to follow-up/Ineligible (n = 13)
- non-responsive to invites: n=9
- pregnant: n=1
- declined FU when approached for personal reasons: n=1
- housebound/wheelchair/subsequently deemed ineligible: n=1;
- withdrew following randomisation: n=1

Analysed (n = 131)

Allocated to control (n = 144)

Withdrawn/Lost to follow-up/Ineligible (n = 11)
- non-responsive to invites: n=5
- pregnant: n=2
- declined FU when approached for personal reasons: n=1
- declined/unavailable for FU when approached, no reason given: n=3

Analysed (n = 133)
Click here to access/download
Supporting Information
S1 CONSORT.doc