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Abstract: 

In this paper the timing properties of a single switch LAN are analyzed. The analysis is based upon relatively simple iterative 
algorithms to analyze the duration of the synchronous busy period of a message set, assuming FIFO buffering in both the source 
nodes and switch are employed. In this paper, the real-time traffic (periodic and sporadic) is also assumed to be subject to 
random interference from other sources, and a probabilistic stance is taken. A number of observations are made based upon our 
initial analysis and investigations, and preliminary algorithms are proposed to probabilistically estimate the worst case queuing 
delays at source nodes and switch output ports assuming some knowledge of the (mean) interference levels are known. The work 
was principally motivated by the need for easy-to-apply and relatively accurate probabilistic timing analysis in distributed 
automation implementations; it may also be applicable to other industrial contexts. The paper concludes that the techniques may 
be able to provide a useful building block for larger packet switched networks with deterministic and stochastic traffic sources, 
and future work will consider extensions to multiple switch hierarchical networks. 
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INTRODUCTION 

Recent trends have seen an increase in the use of packet-
switching technologies for the implementation of simple 
distributed (and possibly embedded) networks for sensing and 
control applications [1][2]. Providing guarantees of timely 
delivery in packet-switched networks is a complicated problem, 
as the worst-case delays incurred across multiple hops in the 
network must be derived. Of course it is possible to employ 
packet scheduling techniques, e.g., Earliest Deadline First 
(EDF) [3]. This can simplify the overall analysis problem, and 
by having appropriate admission controls a flexible yet 
predictable network may be implemented.  

On the other hand, in some applications (e.g. factory 
automation and domotics), the use of specific packet 
scheduling algorithms may not be practical since many 
standard packet-switching network components and 
technologies only support simple First Come First Served 
(FCFS) scheduling. Previous work has examined the timing 
properties of networks scheduled using FCFS under the 
assumption that traffic is implemented as a number of periodic 
streams [1][2]. For reasons discussed in [2], it can become very 
complex when applying techniques such as network calculus 

when traffic is periodic and FCFS is employed. In this paper, 
we wish to analyze the timing properties of simple packet 
switched LANs (using techniques similar to those of [2]) in 
which the real-time traffic is principally periodic and/or 
sporadic. However, it also considers that unpredictable 
interference - in the form of frames arriving from other 
sources in a random fashion with known mean – is present. 
Since this interference is random, probabilistic timing 
guarantees are appropriate; in this compact article, we report 
some initial investigations and findings. The remainder of the 
paper is structured as follows. In Section II, our assumptions 
on the network topology and traffic models are given, and 
Section III discusses the probabilistic calculation of queuing 
delays and buffer size requirements. Section IV concludes the 
article and discusses areas for future improvements. 

2. NETWORK AND TRAFFIC ASSUMPTIONS AND 
MODELS 

2.1. Single-Switch Network Section 

Firstly, we assume that time is discrete and occurs in integer 
multiples of a global clock which has a resolution equal of  
(typically this would be the homogenous network bit-time). 
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For simplicity, we assume henceforth that  = 1. The next 
assumption is that the LAN infrastructure under analysis 
consists of a number of stations connected via a single network 
switch or router. We assume that if a router is present, it only 
carries out very simple low-level routing and so may be 
effectively treated as a standard FIFO-buffered switch. For 
simplicity, we will also assume that the switch is homogenous, 
i.e. that the incoming/outgoing bit rate of each port is 
identical. Although this is a relatively simple network to 
consider, it provides a representative starting point and allows 
for straightforward extension. We assume that the network 
segment to be analyzed consists of Ns stations connected to 
the single switch, which has Np active ports such that Ns ≤ 
Np. We assume that the system to be implemented is described 
as a number Nc of virtual channels, with each channel 
mapping a logical path between a source and destination 
station through the switch. This situation is depicted in Fig. (1). 

Using similar terminology as in [1] and [2], the total worst-case 
end-to-end delay for any virtual channel i (denoted as 
Te2edelay,i) is assumed to be comprised of several sub-sources 
of delay as shown in Fig. (2). 

The components making up the Te2edelay,i delay are as 
follows: Tsdelay,i represents the worst-case delay at the source 
node, and is principally due to queuing whilst awaiting access 
to the Network Interface Card (NIC). This delay is node-
dependent as heterogeneity of nodes is assumed. Tnode 
represents the worst-case latency for a frame in the head of the 
queue to leave the source node (e.g. due to non-preemption), 
and depends upon several node-dependent factors which will 
be subsequently described. Tprop represents the propagation 
delay over the physical link (we assume that connection cables 

are of identical length; an assumption which is easily lifted if 
required). TS,i represents the worst-case delay at the switch, 
and is principally due to buffering whilst awaiting access to the 
output port. Finally, Tswitch is the worst case latency for a 
frame in the head of the queue to leave a switch/port. In this 
paper, as in [1] and [2], we are principally concerned with 
determining the source node delay Tsdelay,i and the switch 
delay TS,i. In the analysis that follows, we are more closely 
follow that developed in [2] as the work of [1] – whilst being 
simpler in its formulation than – makes some pessimistic 
assumptions (e.g. that all stations may simultaneously transmit 
to any other station) and restricts key parameters (e.g. that 
periods are all greater than the worst-case transmission delay). 
For the remainder of the discussion, we assume that time 
(which is represented by t) is continuous, real-valued and non-
negative. Next, we outline the deterministic and random traffic 
models that are employed in this preliminary study. 

2.2. Periodic/Sporadic Traffic 

For periodic/sporadic channels, let each channel i   be 
represented by the 4-tuple: 

 , , , .i i i i iS D T C   (1) 

In which Si is the (integer) source station identifier and Di is 
the (integer) destination station identifier. For simplicity, 
assume that station identifiers are identical to the port numbers 
(i.e. station 1 is connected to port 1, station 2 is connected to 
port 2, and so on). Ti  + represents the period/minimum 
inter-arrival time of the channel and Ci  + is the worst-case 
transmission time of any message frame generated by the 
channel (each invocation of the channel is called a message 
frame or simply frame). Let the kth frame generated by channel 

 
Fig. (1). Example of a single switch network such as that under consideration. 

 
Fig. (2). Sources of delay in the single-switch network. 
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i be denoted as i,k. Successive frames generated by sporadic 
channels are always separated by at least Ti units of time; 
successive frames generated by periodic channels are always 
separated by exactly Ti time units. Since it is known that the 
worst-case manifestation of a sporadic message stream is the 
pattern in which the minimum inter-arrival times are always 
adhered to (and the stream effectively becomes periodic) [3], 
periodic/sporadic streams will henceforth be referred to as 
simply periodic for ease of exposition. For periodic streams, 
the worst-case cumulative workload generated by stream i 
(denoted as wi) in the interval [0, t) can be calculated using [2]: 

( ) 1i i

i

t
w t C

T

  
     

  
 (2) 

2.3. Random Traffic 

Many types of network traffic are essentially random in nature; 
it is well known that in some circumstances frame inter-arrival 
times are well-modeled as exponential or geometric 
distributions [4, 5]. Let us assume that each source station 
sends and receives random traffic, however this random traffic 
does not have a specific destination (in the case of traffic 
generated by a node) or a specific source (for traffic received 
by a node). In addition, we assume that the payload length is 
unknown, and make the assumption that any random frames 
processes by node i will always have length  Ĉi  + 
(typically, Ĉi will be set to the worst-case payload length 
allowed by the protocol for all nodes). The final assumption 
that we make is that the system is not closed, in the sense that 
random traffic in the network is just sent and received by the 
stations connected to the switch; an external gateway may be 
present, hence the total mean traffic sent and received by all 
nodes is not necessarily equal. Let the inter-arrival times of the 
random traffic generated by node i be geometrically distributed 
with a mean iT    +, and the inter-arrival times of traffic 
received by node i also be geometrically distributed with mean 

iT    +. Then for each station i, the parameters of the 
random traffic can be described by the 3-tuple i  : 

 ˆ, ,i i i iT T C    (3) 

Overall, the network and source models described may occur 
in a small-scale home or industrial automation application 
where process information and control traffic may co-exist 
with other traffic (e.g. email internet) that is best described by 
random attributes. Given a set of stations, virtual channels and 
a probability R [0.5, 1), we are interested in obtaining tight 
probabilistic bounds on the worst-case transmission delay that 
each channel may experience. Also, we are interested in the 
required source and switch buffer sizes such that probability 
that these timing or buffer bounds become violated is 
guaranteed to be  (1-R). In order to determine this 
information efficiently, we require an upper bound on the 
expected number of packet arrivals for a random traffic stream 
in some interval of time, for a given confidence probability. 
Since time is discrete and the distribution of arrival times 
assumed to be geometric, the probability of a packet arrival at 
each individual time step - p - is equal to 1/ T , where T is the 
mean inter-arrival. If the number of packet arrivals occurring in  
 

t consecutive time-steps (‘independent trials’) is given by the 
variable X, then X follows a Binomial distribution with 
parameters t and p. To obtain the bound with confidence R, 
we therefore seek to evaluate the Rth quantile of X; since 
obtaining the exact quantile requires a (non-trivial) iterative 
search over the Binomal distribution function [5], we shall 
instead use the following upper tail quantile inequality that was 
recently proven: 

Theorem 1: Let (t, p, R) represent the Rth quantile of a 
Binomially distributed random variable comprising t identical 
and independent Bernoulli variables, each having an individual 
probability of success p(0, 1). Then defining the quantity 
C(R) = 2In(1 R)   for R[0.5, 1) an easily computable and 

asymptotically tight upper bound on (t, p, R) is given by: 

 
2( )

( , , ) ( ) 1
6

C R
t p R tp C R tp p

 
    
 

 (4) 

Proof: Short & Proenza 2013 (see [5], Corollary 1). 

When carrying out a timing analysis, expression (4) will 
normally have to be evaluated many times for different values 
of t. Since we assume that both p =1/ T and R are known (as a 
basic assumption we could take, for example, R = 0.999 for 
99.9 confidence), to simplify the repeated computation of (4) 
for a particular link an easy simplification is to first calculate 
the two quantities C1 = 2In(1 R)(1 )    and C2 = -ln(1-
R)/3. A bound on the outgoing workload generated by random 
traffic originating in station j in the interval [0, t) (denoted as 
wj+) for a confidence probability R is thus given by: 

1 2
ˆ( )j j

j j

t t
w t C C C

T T



 

 
    
  

 (5) 

Where Ĉi is, as discussed above, the worst-case frame length of 
random traffic. This is a simple closed-form expression which 
is easily computed for any of the input parameters in constant 
time; note that the probability that the actual workload exceeds 
that computed by (5) in the specified interval is formally 
guaranteed to be  (1-R) [5]. Now, the worst-case incoming 
workload for station j (denoted as wj-) can be obtained from 
(5) with appropriate replacement of iT  with iT   and 
adjustment of C1. Expression (5) seems simple enough to 
allow an adaption of the ‘busy period’ analysis methods 
developed by Fan et al. in [2] to be adapted to the case of 
stochastic traffic; however there are several points that require 
attention prior to developing a suitable analysis. 

3. BUSY PERIOD ANALYSIS 

3.1. Analysis of Periodic Streams 

For purely periodic streams, several key results were 
established in [2]; in the context of the current work, the two 
main points that were proven were as follows. When 
determining the delays due to FIFO buffering of frames at the 
source stations, the synchronous arrival case (all periodic 
streams arrive simultaneously at t = 0) is the worst possible. In 
this case, the worst-case queuing delay of stream i (denoted as  
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DSi) is finite if and only if the utilization of the outgoing 
channel from station i is not overloaded, i.e. has a utilization 
bounded as follows: 

j

j

j

j
S i

C
1

T 


  (6) 

And has a value given by: 

j

j

i j

S i

DS C
 



   (7) 

Where the summation limits of (6) and (7) are such that every 
valid channel in the set  which a source station identifier of j 
are included in the summation. Secondly, when determining 
the delay due to FIFO buffering of incoming frames at the 
output port i of a single switch, the synchronous arrival case 
(again in which all periodic streams arrive simultaneously at t = 
0 in each of the source nodes) is the worst possible. The worst-
case queuing delay in this situation is found during the initial 
busy period, which can be obtained as the smallest (positive) 
solution of the following equation (which is iterated from t = 
0): 

( ) ( )
j

j

i j

D i

WP t w t t
 



   (8) 

Where WPi(t) represents the workload presented to stream i t 
time units after the synchronous arrival pattern. This busy 
period has finite length if and only if the utilization of the 
incoming channel from station i is not overloaded, i.e. has a 
utilization bounded as follows: 

1
j

j

j

j
D i

C

T 



  (9) 

Clearly, for the network model presented in the previous 
Section, if there is no random traffic then these techniques 
would suffice to determine the worst-case delays. When 
random traffic is included in the analysis, however, it is not 
immediately obvious the extent to which these results are still 
relevant. In the next two Sections, the focus will be upon delay 
analysis in the source and switch output ports. 

3.2. Source Node Queuing Delay 

Firstly, we have observed that worst-case queuing delay in a 
source node no longer occurs at t = 0 due to the non-periodic 
nature of the workload function (5); this is highlighted by the 
following simple example. In Fig. (3), we compare the source 
node FIFO queue size of a single periodic channel Q(t) with 
{T = 10, C = 5} with a channel experiencing only random 
traffic with { T = 10, Ĉ = 5}. A confidence probability R = 
0.999 was used in the latter; the constants C1 and C2 required 
for (5) were computed as 3.526 and 2.303 respectively. The 
results were obtained using a standard personal computer 
running a simple C++ application. The plot shows the 
comparison between t = 0 and t = 170, the point in time in 
which the queue size for the random traffic drops to zero 
indicating the end of the busy period. Clearly in the latter case 
the queue size is first increasing from Q(0) = 15 and first peaks 
at the maximum value of Q(28) = 32, before starting to 
decrease (non-monotonically) at t = 33. This indicates that it is 
likely to also need to employ busy period analysis in the source 
nodes when random traffic is present, unlike in the purely 
periodic case. 

For the workload arrival function (5), it was shown in [5] that 
the workload is non-decreasing in t and eventually approaches 
(but does not exactly converge upon) the mean workload 
tĈ/ T . This implies that the worst-case queuing delay can be 
obtained by examining the synchronous busy period for 

 
Fig. (3). Comparison of FIFO delay in a source node. 
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periodic tasks under the assumption that the random traffic 
also starts to arrive at t = 0. However, we first need to consider 
under what conditions the resulting busy period will have a 
finite length; a necessary condition is clearly that the utilization 
of the channel (including the mean utilization Ĉ / T  of the 
random traffic) does not exceed unity. Unfortunately this 
condition is not sufficient, as choosing an example in which 
there is no periodic traffic and any Ĉ = T > 0 with R > 0.5 
can easily be verified using (5). Observing that the source 
traffic can be modeled by the summation of two queues 
(Geo/D/1 and D/D/1 in Kendall’s notation [7]), it is known 
that such a link has a finite busy period if and only if the link 
utilization strictly less than one [7]. This result also holds 
despite the observation that the inequality (5) is not exact due 
to Theorem 2 in [5], which has shown that relative 
overestimation error in expression (4) vanishes for large t. 

However, when the total link utilization is close to unity the 
length of the synchronous busy period becomes too large to 
analyze in a reasonable time and is sensitive to the choice of R. 
Indeed this seems to be much worse that in the purely periodic 
case, in which the busy period is always limited by the least 
common multiple (lcm) of the channel periods even for high 
utilizations. By limiting the effective allowable channel 
utilization to be less than some upper limit UM  0.99 results 
in tractable behavior for reliability levels in our range of 
interest. Therefore, in order to determine the worst-case 
latency the following general procedure can be used. Defining 
the total outgoing cumulative workload for station i at time t as 
Wi+(t): 

( ) ( ) ( )
j

j

i j i

S i

W t w t w t


 





 
 

  
 
 

  (10) 

Then if the busy period has length L the outgoing queue size 
when random traffic is also present Qi+(t), for t  L, is easily 
computed as Wi+(t) – t. To find the worst-case delay, one 
finds the extrema of the function Wi+(t) – t subject to 0  t  
L. As it is assumed that time is discrete, then a simple iterative 
scheme may be used to solve the problem in a straightforward 
fashion with time complexity O(Ns L) and space O(Ns). 
Pseudo-code for such an algorithm is shown in Fig. (4). The 
operation of the algorithm may be briefly described as follows. 
Lines 2 and 3 initialize the variables Q and t, representing the 
worst-case queue size and time respectively. Line 4 checks the 
channel utilization and returns signaling an error if it is 
overloaded. There then follows a loop between lines 5 and 9, 
which terminates only when the cumulative workload Wi+(t) 
(represented by the variable W) is  to t, indicating the 
presence of idle time and hence the end of the busy period. 
The workload W is updated on line 6 according to expression 
(10); the worst-case queuing found so far is then updated on 
line 7, and time advanced by the factor  (= 1) on line 8. The 
worst-case queuing population is then returned on line 10. 

Example 1: Suppose we have the following traffic 
characteristics in a source node: two periodic/sporadic streams 
{T = 20, C = 3} and {T = 30, C = 5} combined with a 

random outgoing stream { T = 10, Ĉ = 5}. Application of the 
algorithm described above (assuming R = 0.999) yields a worst 
case delay estimate of 69, which occurs at t = 240 assuming the 
start of the busy period at t = 0. The end of the busy period in 
this case occurs at t = 1131. 

 
Fig. (4). Algorithm to determine the maximum queuing delay for a 
single source station. 

Note that these measures of delay not only represent the 
latency incurred by a frame when exiting the source node, they 
also imply a bound on the buffer size required by the node to 
implement the queue [2]. If the random traffic characteristics 
have been correctly modeled, then the probability of either of 
these bounds being violated is guaranteed to be  (1-R). 

3.3. Switch Output Port Queuing Delay 

Turning attention now to a switch output port, the analysis 
may progress upon the following lines. Given our assumptions 
upon the network topology (Fig. 1), we may observe that the 
traffic leaving the switch via a given output port is essentially 
the input traffic destined for the corresponding station. Since 
Fan et al. [2] have shown that for periodic streams the 
synchronous arrival case in each of the source nodes is the 
worst-possible (note that this considers only the traffic to be 
delivered to this specific output port; other port traffic is 
omitted from the analysis), and we have that the interference 
from random traffic is maximized over smaller intervals, let us 
again define the total incoming cumulative workload for station 
i at time t as Wi-(t): 

( ) ( ) ( )
j

j

i j i

D i

W t w t w t


 





 
 

  
 
 

  (11) 

The analysis to obtain the worst-case delay may then proceed 
along similar lines as that developed for the traffic leaving a 
source node, with the following caveat; the rate at which work 
from the input ports of the switch can be transferred to any 
single output port is limited by the physical design of the 
switch [2]. In the case of periodic and random traffic streams 
operating with a discrete clock having resolution , this 
restriction can be (pessimistically) captured as follows: 

Observation 1: In the case where a station does not transmit 
frames directly to itself (i.e. no direct loop-back), then the 
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worst-case workload that can be transferred to the output 
queue of any switch port with every clock tick  is (Np-1). 

Proof: Assume that during an interval of time having length  
each active port of the switch is busy processing incoming 
traffic. Consider any output port j. Since there is no loop-back, 
assuming the worst-case then at most (Np-1) ports can have 
incoming traffic destined to be transferred to port j. In the 
worst-case all input ports will be busy processing incoming 
traffic for port j simultaneously, hence the maximum workload 
transferred to queue j is (Np-1). 

Again observing that the switch output traffic can be 
represented by the summation of multiple queues (one 
Geo/D/1 queue and one D/D/1 queue for each channel with 
this destination port), the busy period will be finite if and only 
if the link utilization is strictly less than one [7]. The same 
effective allowable channel utilization limit of UM  0.99 
seems to result in tractable behavior for reliability levels in our 
range of interest, and taking these factors into consideration 
leads to the simple iterative scheme for delay estimation shown 
in Fig. (5), again requiring time O(Ns L) and space O(Ns). The 
operation of the algorithm is almost identical to that of Fig. (4), 
with the main exception that the rate at which the workload W 
is updated on line 6 is rate-limited to (Np-1) per iteration (since 
we assume  = 1). Note that this rate-limit does not affect the 
length of the busy period if Np > 1, since the same total 
workload is eventually delivered out of the port, but has the 
effect of modulating (and potentially reducing) the peaks in the 
queue size. 

This latter point related to the effect of Np is illustrated by Fig. 
(6) below, in which the queuing delay for the same random 
traffic model { T = 10, Ĉ = 5} with R = 0.999 employed to 
create Fig. (3) is displayed for values of Np equal to 2, 3 and 6. 
The results were obtained using a standard personal computer 
running a simple C++ application. For Np = 2, the queue size 
is never greater than 1 as the rate of delivery into the buffer is 
the same as the rate of exit. For Np = 3, the rate of delivery 
into the buffer is twice the rate of exit leading to a steady 
increase and a peak of Q(29) = 30. As can be seen, for Np = 6 
the worst-case queue delay of Q(28) = 32 is still achieved, and 
the overall evolution of the queuing delay begins to approach 
that shown in Fig. (3). For Np > 10, the evolution becomes 
identical as the worst-case rate of delivery into the buffer is no 
longer affected by the limit. 

 
Fig. (5). Algorithm to determine the maximum queuing delay at a 
switch output port. 

Example 2: Suppose we have the following traffic 
characteristics in a switch with 4 ports (Np = 4): three 
periodic/sporadic streams {T = 30, C = 2}, {T = 50, C = 5} 
and {T = 100, C = 10} combined with a random incoming 
stream { T = 20, Ĉ = 10}. Application of the algorithm 
described above (assuming R = 0.999 giving C1 = 3.623 and 
C2 = 2.303) yields a worst case delay estimate of 114, from the 
extrema which occurs at t = 312 assuming the start of the busy 
period at t = 0. The end of the busy period in this case occurs 
at t = 1468. 

Note again that these measures of delay not only represent the 
latency incurred by a frame when transiting through a switch, 
they also imply a bound on the buffer size required at the 
switch output port [2]. If the random traffic characteristics 
have been correctly modeled, then the probability of either of 
these bounds being violated is again guaranteed to be  (1-R). 

4. CONCLUSIONS AND FURTHER WORK 

This paper has focused upon the timing properties of real-time 
traffic (periodic and sporadic) in a simple one-switch network 
that is subject to random interference. A probabilistic stance 
was taken, and preliminary algorithms proposed to estimate the 
worst-case queuing delays for a given confidence level at 
source nodes and switch output ports assuming the mean 
interference levels are known. In particular, the simple 
algorithms of Fig. (4) and Fig. (5) provide the means to 
determine delay bounds to a given confidence level. Examples 
1 and 2 have been presented to illustrate (Fig. 3 and Fig. 6) the 
usefulness of the developed techniques. Although the network 
architecture is presently somewhat restrictive, the simplicity of 
the algorithms is indicative that the techniques may be able to 
provide a useful building block for analysis of larger packet 
switched networks with deterministic and stochastic traffic 
sources.  

In terms of future work, aspects of queuing theory and 
network calculus (see e.g. [2] and [6]) may provide a means to 
extend the ideas contained within this paper to obtain similar 
probabilistic bounds on more complex networks. The analysis 
techniques and algorithms presented in this paper will benefit 
greatly from a number of simple improvements; principally, to 
improve time complexity, a discrete-event solution approach 
(as opposed to iterating an increasing time variable) will be 
adopted for the solution of the algorithms of Fig. 4 and Fig. 5. 
Obtaining accurate estimates of the next arrival of work from 
the workload function (5) in a discrete-event simulation can be 
obtained by re-arranging the expression to predict the next 
arrival time of a periodic or random frame event. It is also clear 
that some pessimism could potentially be removed from the 
estimation of the port output delay by maintaining a separate 
FIFO for the incoming workload originating in each source 
node in Fig (5). Also, to enable more realistic structures of 
network to be analyzed, it is required to be able to analyze 
switches in which part (or all) of the incoming traffic originates 
from other switches and the transmission rate is non-
homogenous. One further improvement that is also required is 
the need to model situations in which the probability of a 
packet arrival at each time-step is time-varying (e.g. to cater for 
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bursty arrivals of packets). For this latter point, we note that 
both Theorem 1 in [5] and Corollary 7 in [7] may be adapted to 
suit this purpose, and we leave this to future work. The 
quantile inequalities in this latter work will also clearly provide 
sharper results than provided by Equation (4), for reasons 
discussed in [7]. In addition, the novel methods investigated 
for probabilistic analysis as developed in [8] may provide scope 
for application in the context of the current paper. 
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Fig. (6). FIFO delay in a switch output port with random traffic for various values of Np. 
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